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ABSTRACT

Inspired by the webs of orb-weaving spiders, we explore
the potential of compliant fiber networks to serve as mechani-
cally intelligent physical reservoir computers. By exploiting the
nonlinear dynamics inherent in the mechanical deformations of
networks of connected fibers, we perform complex computational
tasks without the need for conventional neural network archi-
tectures. Using Cosserat rod-based models, we simulate the
behavior of these fiber networks, evaluating their computational
abilities through the metrics of nonlinear capacity and memory
capacity. We find that increasing the number of fibers enhances
the nonlinear computational and memory recall capacity of the
network, improving its computational performance. To validate
these findings, we construct a physical prototype of the fiber net-
work and experimentally demonstrate its ability to nonlinearly
process input signals and recall previous inputs. Results sug-
gest that compliant fiber networks can serve as effective physical
reservoirs for mechano-intelligent computation, offering a low-
cost, scalable, and manufacturable platform for applications in
robotics, autonomous systems, and structural monitoring.

Keywords: Physical reservoir computing, Mechanical
intelligence, Soft sensors, Cosserat rod, Fiber network

1. INTRODUCTION

Physical reservoir computing is an emerging computational
framework that leverages the nonlinear dynamic properties of
physical systems to perform complex computations [1], with par-
ticular recent attention paid to compliant mechanical systems [2—
8]. Such systems can exhibit ‘mechanically intelligent’ behavior
where taxing computational tasks are offloaded to its nonlinear
physical dynamics [9, 10], serving to in turn simplify certain
sensing and control tasks. Such physical intelligence is ubiqui-
tous in nature, with biological systems regularly exploiting this
emergent computational ability [11]. For example, orb-weaving
spiders build webs made of crossing flexible fibers to capture

prey. A spider can then extract information about its environ-
ment by sensing vibrations that travel along the web, enabling it
to localize prey location, identify structural damage, and distin-
guish between different types of web deformation (e.g., prey vs
wind) [12-15]. Inspired by this unique structure, here we eval-
uate the computational power of a network of crossing flexible
fibers through the framework of physical reservoir computing.

Physical reservoir computing [1, 16, 17] extends the tradi-
tional theory of reservoir computing [18-21] to capitalize on
the intrinsic dynamics of various mechanical systems to emulate
computational behaviors. Examples include nonlinear spring-
mass networks capable of emulation and pattern generation tasks
[22-28], architected materials that respond predictably to input
stimuli [29-32], origami-based mechanical systems that extract
complex information from its structural dynamics [2—4], and soft
robotic systems that integrate sensing and actuation to process
information [5-8, 33]. These systems exhibit the core properties
required of an effective reservoir: high-dimensionality, nonlin-
earity, fading memory, and the separation property [1]. These
traits ensure the system can map input streams into unique, dis-
tinguishable dynamic states, retain short-term memory of previ-
ous inputs, and generalize across different computational tasks.
Overall, physical reservoirs provide a compelling and scalable
pathway toward embedding computation into material and struc-
tural systems, laying the groundwork for new forms of distributed,
embodied intelligence.

We then construct an experimental platform to validate our
simulation results and demonstrate the practical feasibility of our
approach. We experimentally demonstrate the ability of a fiber
network to perform nonlinear computation on an input signal and
explore the impact of varying system parameters of fiber tension
force, fiber stiffness, and number of fibers.

Our findings indicate that a network of crossing, flexible
fibers inspired by the webs of orb-weaving spiders exhibit com-
putational capabilities, endowing it with the ability to serve as
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a physically intelligent structure. The network’s ability to pro-
cess information positions it as a low-cost and easy to manufac-
ture compliant sensing technology with potential applications in
robotics, autonomous systems, and structural monitoring. Over-
all, this integration of physical reservoir computing with a net-
work of flexible fibers offers a promising direction for future
mechano-intelligent sensing and provides a foundation for fur-
ther exploration and development of such advanced soft sensing
technologies.

2. COMPUTING WITH PHYSICAL DYNAMICS

In this work, we adopt the framework of physical reservoir
computing and apply it to a network of crossing, compliant fibers.
We apply a mechanical deformation input u(¢) to the network and
measure the x-y displacements of m locations on the fiber net-
work as x(¢) = {x;(2), y;(¢t) Vi € 1...m} where x;(¢), y; (t) :—> R
and m is determined based on the number of fibers in the network
(i.e., x(¢) has 2m entries). In general, the input u(¢) may be any
continuously varying function. However, to evaluate the phys-
ical reservoir computing performance of our fiber network, we
restrict ourselves in this work to a cubic spline fit to interpolation
points that are evenly spaced 0.2 seconds apart (5 Hz) and are
independent and identically drawn from a uniform probability
distribution. This approach ensures that any structure observed
in the output arises from the reservoir itself rather than from cor-
relations in the input [34] while ensuring a continuous, smooth
signal compatible with the elastic dynamics of the fiber network.
Reservoir computers are universal filters [21] so that, for an ar-
bitrary, real-valued nonlinear functional z[u(¢)], there exists a
mapping, W : x(t) + z[u(t)], such that WV is linear in x(¢). An
approximation of such a map,

2(1) =W -x(7) (1)

can be identified by estimating the linear weights W € R>™
through ridge regression.

In practice, the types of functions that can be learned are
limited by the dynamics of particular reservoir. Our goal then is
to probe the capability of a fiber network to serve as a physical
reservoir computer. To do so, we first define a general capacity
metric that captures the reservoir’s ability to accurately learn a
linear map W that provides an approximation Z(¢) = W - x(¢) of
the functional z[u(?)] over the time interval [a, b] [34]

Lb:a(ﬁ(f) — z[u(2)])?dt

[z] =1-
- .[tb:a(z[”(t)] - Z)zdt

2

where 7 is the mean of z[u(#)] over the time interval [a, b]. Based
on this metric, we then define two specific metrics that quantify
the computational capability of the reservoir: nonlinear capacity
and memory capacity.

Nonlinear capacity measures the reservoir’s ability to per-
form nonlinear computations on the current input u(t) into
the network. Here, we consider the ability of the reservoir
to learn Legendre polynomials Py (u(z)) of order k, such that
zx[u(t)] = Px(u(t)) for k € {1,...N} and N = 10. Legendre
polynomials provide a complete and orthogonal basis set that
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Figure 1: Snapshot of Cosserat rod-based fiber network actuated
by a time-varying input force. The displacement of fiber nodes and
midpoints (marked by blue dots) are tracked and used to generate
compute mappings.

spans the interval [—1, 1] and so provide not only a challenging
test of the fiber network’s nonlinear capability, but also indicate
the ability of the reservoir to approximate any smooth function
over this interval due to the efficiency with which Legendre poly-
nomials represent such functions. We additionally define an over-
all nonlinear capacity of the reservoir as the sum of the individual
capacity metrics C,y = 1/N Zszl clzx].

Memory capacity measures the reservoir’s ability to gen-
erate linear mappings that recall previous inputs. In this case,
Ze[u(t)] = u(t — ) where 7 € [0,T] is a time lag. We con-
sider recall up to one second in the past (T = 1.0 s). Finally, we
define the overall memory capacity of the reservoir as the inte-
gration of the individual capacity metrics over the recall interval

Co = 1T [ clzr]:

3. FIBER NETWORK SIMULATIONS

‘We model the fiber network as an assembly of Cosserat rods,
which are slender, one-dimensional elastic structures that can un-
dergo all modes of deformation: bending, twisting, stretching,
and shearing. The numerical implementation of Cosserat rods
is computationally efficient as they accurately capture large 3D
deformations through a one-dimensional representation, alleviat-
ing time-consuming remeshing difficulties and compute costs of
3D elasticity. In this study, we used Elastica [35], which is an
open-source, Python-based implementation of a Cosserat rod nu-
merical scheme whose utility in modeling fibrous dynamics has
been demonstrated in a range of settings, from animal locomotion
and manipulation [36-39] to fibrous metamaterials [40], and soft
robotic design and control [41-44].

3.1. Simulation setup

To assemble a fiber network, we arrange individual rods in
an evenly spaced n X n network where n € {2,3,4,6,8,10} is
the number of fibers. Fibers are fused together at intersection
points using using a zero-displacement spring-damper boundary
condition [37]. Fibers are fixed on one end and a constant tension
force of F; is applied axially on the other end to apply a pretension.
Material parameters of the fibers are defined in Table 1. The
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Figure 2: Network simulation results. (a) Nonlinear and (b) memory capacities of increasing network sizes for fibers with a Young’s
modulus of 10 MPa. (¢) Nonlinear and (d) memory capacities of increasing network sizes for fibers with a Young’s modulus of 100 MPa.
Overall (e) nonlinear and (f) memory capacity of the networks. Larger networks and stiffer fibers tend to perform better. A different range
of capacities are considered for (e) and (f) making their relative magnitudes not comparable.

architecture of a 2 x 2 network is shown in Figure 1. A similar
architecture is used for larger fiber networks. For increasing
number of fibers, the overall length of the network was held
constant, with the spacing between parallel fibers being decreased
to accommodate additional fibers. This decreases the effective
aspect-ratio of fibers between fiber crossings, causing the overall
response of larger fiber networks to be mechanically stiffer.

A time-varying external force F,,(¢) is applied to the mid-
point of the middle horizontal fiber to actuate the network. This
force is a cubic spline that fits randomly generated timestamps
in the interval (0,T), where T is the duration of the simulation.
For each fiber network setup, 40 simulations of 15 seconds each
were run with a different F,, used for each case. The maxi-
mum magnitude of F,, was varied as 0.02 N, 0.04 N, 0.06 N,
0.2N, 0.5 N and 1 N across n € {2,3,4,6,8, 10}, respectively.
The maximum force magnitude was empirically tuned to achieve
consistent displacement of the actuation point across all network
sizes. Simulation data was sampled at a 250 Hz frequency and the
x-y displacements of fiber intersection points and the midpoints
of fibers between intersections was recorded and used as the state
of the physical reservoir x(¢) € R>™. These inputs and outputs
are then used with the physical reservoir computing framework
described above to compute capacity metrics.

Table 1: Physical parameters of simulated fibers

Parameter Value
Fiber Length 500 mm
Fiber Diameter 2 mm
Density 1000 kg/mm?
Young’s Modulus 10 MPa; 100 MPa
Tension Force (F}) 0.01N
Maximum External Force 0.02-1 N

We denote our desired output as z(¢) which is derived from
our input to the reservoir u(z) = F,.(t). For evaluating the
nonlinearity of the reservoir, our desired output is the Legendre
Polynomial of order k € {1, ..., 10} and for memory evaluation
it is the input from 7 € [0, 1] seconds in the past. We split
x(t) and z(¢) into training and testing sets with a train to test
ratio of 0.75:0.25. The training set is used to perform Ridge
regression and obtain the mapping VV. We then use this mapping
to estimate Z(¢) on the testing set and compute the capacity metrics
as described in Section 2.
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Table 2: Physical parameters of experimental setup

Parameter Fishing Line (no Fishing Line Elastic Cord (no Elastic Cord
pretension) (pretension) pretension) (pretension)
Length 520 mm 490 mm 420 mm 490 mm
Diameter 0.45 mm 0.45 mm 4.79 mm 4.79 mm
Young’s Modulus 1 GPa 1 GPa 22.8 MPa 22.8 MPa
Tension Force 0.47 N 226N 047N 226 N
Number of Fibers 2,4,6 2 2

3.2. Simulation results

We considered fiber networks with Young’s moduli (E) of 10
MPa and 100 MPa. For each modulus, we varied the number of
fibers in the network, testing network configurations of increasing
number of fibers. For each fiber network, the nonlinear capacity
of the network to compute Legendre polynomials Py (u(t)) of
order k € {1...10} and the memory capacity to remember inputs
up to one second in the past was computed. Results for all
simulations are shown in Figure 2.

The nonlinear capacities of networks with a Young’s modulus
of 10 MPa are shown in Fig. 2a and those with a modulus 100
MPa are shown in Fig. 2c. As expected, the nonlinear capacity
of all networks decays as it is challenged to compute higher-
order Legendre polynomials. For both moduli, larger networks
generally exhibit higher capacity, as shown in Fig. 2e, where
the sum of the capacities for all Legendre polynomial orders is
plotted. Overall, stiffer 100 MPa networks outperformed softer
10 MPa network for all sizes. While the overall capacity of the 10
MPa networks gradually increased for increasing network size,
the 100 MPa networks exhibit a much faster increase in overall
capacity up to a size of 6 X 6 before a moderate drop off in overall
capacity occurs. While the source of this decrease is unknown,
it may indicate a limit to the improvement in computing capacity
possible by simply increasing the network size.

Similar to the nonlinear capacity results, the memory capac-
ities of networks with a Young’s modulus of 10 MPa are shown
in Fig. 2b and those with a modulus of 100 MPa are shown in
Fig. 2d. We compute the ability of the fiber network to recall
inputs u(t — 1) for v € [0, 1] seconds, leading to a continuous
distribution of capacities compared to the discrete set of results
based on polynomial order for the nonlinear capacity. For both
10 MPa and 100 MPa fibers, larger networks exhibited improved
memory capacity, with better recall of inputs further in the past.
For 2 x 2 and 3 X 3 networks, the 10 MPa fiber network out-
performed the 100 MPa fiber network in their overall memory
capacity (Fig. 2f). However, as with nonlinear capacity, the
100 MPa fiber networks exhibit faster improvement in their over-
all memory as the network size increases compared to the more
moderate rate of increase for 10 MPa. As a result, the 100 MPa
outperforms the 10 MPa networks for fiber sizes larger than 4 x 4.
The overall memory capacity of the 100 MPa networks peaks at
8 X 8 before leveling off for 10 x 10, again possibly indicating
a limit on the amount of improved performance available from
simply increasing the size of a fiber network.

Overall, these simulation result indicate that crossing fiber
networks made of slender, flexible fibers can be used to perform

nonlinear computations and process information with the per-
formance of the network strongly impacted by both the fiber’s
material properties and network architecture, necessitating care-
ful setup of the network.

4. EXPERIMENTAL VALIDATION

We next validate the findings of our simulations by perform-
ing experiments using fiber networks to examine their capacity
for physical reservoir computing. We first consider a 2 X 2 net-
work under different material and boundary conditions to identify
a suitable physical reservoir setup and then explore the impact of
increasing the number of fibers on the computational capability
of the fiber network.

4.1. Experimental setup

Our experimental setup consists of a fiber network organized
in an evenly spaced n X n grid. One end of each fiber is fixed
while the other is connected to springs (k = 52.5 N/m) to maintain
consistent tension (Fig. 3). The fibers are bonded at fiber cross-
ings using a Silicone Rubber adhesive (Sil-Poxy). To monitor the
state of the reservoir x(¢), red markers are attached at fiber in-
tersections and midpoints between them and tracked using video
recording. The fiber network is actuated at the midpoint of the
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1 ﬂ

Figure 3: Experimental setup of 2 x 2 network. A servomotor
with a lever arm attached to the fiber network by a string actuates
the fiber network while the x-y position of the red tracking points
is recorded via a camera positioned above the network.
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Figure 4: 2x2 network experimental results. (a) Nonlinear and
(b) memory capacity of networks with different fiber materials and
tension levels. A network made of fishing line and no pretension
performed best overall.

central horizontal fiber using a Dynamixel AX-18A servo motor.
A thread connects the motor’s lever to the fiber (Fig. 3 inset),
allowing controlled actuation. A time-varying input is created by
modulating the joint angle of the motor using a cubic spline fitted
to randomly chosen timestamps over the experiment duration.

Experiments were run under different network conditions
by changing the fiber material, pretension, and network size.
The parameters used for each setup are summarized in Table
2. Each experiment was conducted for either 30 or 60 seconds
and recorded at 120 FPS in HD (1920 x 1080) using a Sony
a7 1II mirrorless camera. The frames extracted from the video
are segmented to track the displacement of each marker over
time. We apply K-means Clustering to label marker positions, and
convert their coordinates from pixels to millimeters. For these
experiments, we use the normal displacement of the actuation
point as the input u(t) = y(¢) (compared to the force value F, (1)
used in simulations). As with simulations, the x-y displacement
of all other points is tracked and used as the output x(¢) of the
physical reservoir to determine computing capacity metrics.
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Figure 5: Impact of network size on physical reservoir’s (a) non-
linear and (b) memory capacity. While the 4 x 4 network outper-
forms the 2 x 2 network in both metrics, the 6 x 6 network only out-
performs smaller networks in its nonlinear capacity while exhibit-
ing a decrease in memory capacity relative to smaller networks.

4.2. 2 x 2 fiber network results

We first examine a 2 X 2 network to study the effect of fiber
material and pretension on the reservoir performance (Fig. 4).
Pretension was introduced by manually shortening the fibers,
stretching the springs closer to their maximum extension. We
tested two materials - monofilament fishing line (E = 1 GPa)
and elastic bungee cord (E ~ 22.8 MPa), each under preten-
sioned and non-pretensioned conditions, resulting in four config-
urations. Young’s moduli were approximated by conducting a
manual force-displacement measurement.

Both non-linear capacity for increasing Legendre polynomial
order (Fig. 4a) and memory capacity (Fig. 4b) was computed
for all four networks. Overall, fiber networks made of fishing
line without pretensioning demonstrated the highest nonlinear
processing ability while the fiber network made of fishing line
with pretensioning exhibited the largest memory capacity.

In all four cases, the nonlinear capacity decreased rapidly
beyond Legendre polynomials of degree 2, asymptotically ap-
proaching zero at higher orders. Memory capacity similarly de-
cayed as the input delay time increased. Both results are broadly
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recall performance.

in keeping with the simulation results. Further, networks made
of the stiffer fishing line material substantially outperformed fiber
networks made of the softer elastic cord, a result also in keeping
with the simulation results of fibers with Young’s moduli of 100
MPa outperforming networks with fibers of 10 MPa. This per-
formance difference likely arises from the increased mechanical
stability in stiffer fiber networks. In contrast, softer networks
exhibit greater nonlinearity in their mechanical response, leading
to more chaotic and less consistent behavior, thus limiting com-
putational performance. Higher levels of slipping between fibers
were also observed in the experiments on softer configurations,
further contributing to noise in the network’s response. Notably,
applying pretension to the softer fibers appeared to partially offset
these effects, as seen in the improved performance of the elastic
cord under pretension. These results suggest it may be possible
to maximize the computational performance of the fiber network
reservoir by tuning its dynamical response to inputs through care-
ful matching of the input force dynamics with the fiber material
properties (stiffness) and pretension on the network.

4.3. Scaling fiber network size

We next scaled the fiber network size, considering both 4 x
4 and 6 X 6 networks (Fig. 5). Based on the results for the
2 x 2 network, fishing line without pretension was chosen as the
network setup for all experiments due to its overall performance
in both non-linear and memory capacity tests.

Nonlinear capacity increases substantially as the network size
increases (Fig. 5a) with a more gradual decay of capacity exhib-
ited by larger fiber networks as the polynomial degree increases.
Additionally, Table 3 reports the capacity, R?-score and Root
Mean Squared Error (RMSE) of the three network configurations
for a Legendre Polynomial of degree 4. As the network size
increases, the capacity and R?-score for nonlinearity increases
while the RMSE decreases. This trend indicates increasing com-
putational capability of networks with more fibers, and so, more
complex dynamic interactions of the fibers. This is in keeping
with similar observations from the simulations and also consis-
tent with the notion that systems with more complex physical
dynamics have better reservoir computing properties.

The performance change of larger fiber networks in terms
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Table 3: Quantitative comparison of network performance

Network 4™_order Legendre Recall 0.2s in past
Size |Capacity R? RMSE|Capacity R> RMSE
2x2 0.301 0.289 0323 | 0.684 0.620 0.299
4x4 0.845 0.847 0.165 | 0.816 0.826 0.253
6x6 0.880 0.882 0.131 | 0.619 0.655 0.342

of their memory capacity is less clear with the overall memory
capacity (the sum of the memory capacities for all time points
in past) of the 4 X 4 network (71.650) outperforming the 2 x 2
network (41.43), but the 6x6 network (41.16) exhibiting degraded
performance, with memory capacity on par with the 2 X2 network
(Fig. 5b). Table 3 reports the memory capacity, R>-score, and
RMSE of the three network sizes when tasked with recalling the
input 0.2 seconds in the past. The memory capacities and R>-
scores of the 2 X 2 and 6 X 6 networks are quite close whereas
the capacity and R2-scores of 4 x 4 network are comparatively
higher as well as having the lowest RMSE. This is in contrast
to the simulation results which showed monotonic increases in
memory capacity as the network size increased. The source of
this disagreement is unknown, though experimental difficulties
of setting up the larger 6 X 6 network may play a role.

Finally, we explore the performance of the 4 X 4 and 6 X
6 networks (Fig. 6). In Fig 6a,d, we merge our non-linear
and memory capacities to consider the ability of the reservoir to
perform non-linear computation on past inputs (z[u(¢)] = Py (u—
7) in Eq. 2). The depicted heatmaps show the capacity of the
fiber network to compute a polynomial of degree k € {1,...10}
for the input from 7 € {0.0,0.1,...1.0} seconds in the past. For
reference, the left-most column and top-most row correspond to
the previously described nonlinear capacity and memory capacity
metrics, respectively.

The results of Fig. 6a,d suggest a possible tradeoff between
the non-linear and memory capacity of our physical reservoir,
a result in line with reservoir computing theory [34, 45]. The
6 X 6 network is more oriented towards non-linear computation,
as indicated by the more vertical organization of Fig. 6d. In
contrast, the more horizontal organization of the 4 X 4 network’s
heatmap in Fig. 6a suggests an orientation towards memory tasks.

This tradeoff is confirmed by examining the performance of
the respective reservoirs. In Fig. 6b,e, reservoir predictions of
Legendre polynomials for degree 2—5 are shown for the 4 x 4 and
6 X% 6 networks, respectively. While both networks perform very
well for lower order polynomials, for polynomials of order 4 and
greater, the spread of points for the 6 X 6 network are notably
more compact and conforming to the true value than the 4 x 4
network.

Similarly, the 4 X 4 network exhibits better memory recall
than the 6 X 6 network as demonstrated in Fig. 6c,f, where the
ability of a fiber network to recall the current input as well as
inputs from 0.1 and 0.2 seconds in the past is plotted. The 4 x 4
network is better able to recall the full range of input, especially
for inputs from 0.2 seconds in the past while the 6 X 6 network
struggles to accurately recall larger inputs magnitude from this
far back.

5. CONCLUSION

Inspired by orb-weaving spider webs, in this work we ex-
plored the computational potential of networks composed of
crossing flexible fibers within the framework of physical reser-
voir computing. Through simulations and physical experiments,
we demonstrated that these networks are capable of performing
nonlinear computations and retain short-term memory—two key
traits of reservoir computing. We showed how material prop-
erties, pretension, and network size influence the computational
behavior, potentially allowing for tunable performance based on
task demands.

Overall, this study confirms that such crossing fiber networks
can serve as physically intelligent structures that sense and pro-
cess mechanical information inherently via their dynamics. This
ability portends exciting opportunities for the design of low-cost
and easy to make fibrous sensing elements with potential appli-
cations in robotics, autonomous systems, and structural health
monitoring. As the field of mechano-intelligent materials contin-
ues to grow, this work demonstrates how simple, soft architectures
of compliant materials can be harnessed for embedded computa-
tion and advancing the integration of sensing and computing in
physical form.

ACKNOWLEDGMENTS

Funding for this work was provided by NSF EFRI BE-
GIN OI #2422340 (B.J., S.L., N.N.) and NSF DCSD #2328522
(S.L.). Computational support was provided by Virginia Tech’s
Advanced Research Computing through use of its Tinkercliffs
cluster.

REFERENCES

[1] Tanaka, Gouhei, Yamane, Toshiyuki, Héroux, Jean Benoit,
Nakane, Ryosho, et al. “Recent advances in physical reser-
voir computing: A review.” Neural Networks Vol. 115
(2019): pp. 100-123.

[2] Bhovad, Priyanka and Li, Suyi. “Physical reservoir com-
puting with origami and its application to robotic crawling.”
Scientific Reports Vol. 11 No. 1 (2021): p. 13002.

[3] Liu, Zuolin, Fang, Hongbin, Xu, Jian, and Wang, Kon-Well.
“Discriminative transition sequences of origami metamate-
rials for mechanologic.” Advanced Intelligent Systems Vol. 5
No. 1 (2023): p. 2200146.

[4] Wang, Jun and Li, Suyi. “Building intelligence in the
mechanical domain—Harvesting the reservoir computing
power in origami to achieve information perception tasks.”
Advanced Intelligent Systems Vol. 5 No. 9 (2023): p.
2300086.

[5] Nakajima, Kohei, Hauser, Helmut, Kang, Rongjie,
Guglielmino, Emanuele, et al. “A soft body as a reser-
voir: case studies in a dynamic model of octopus-inspired
soft robotic arm.” Frontiers in computational neuroscience
Vol. 7 (2013): p. 91.

[6] Nakajima, Kohei, Li, Tao, Hauser, Helmut, and Pfeifer, Rolf.
“Exploiting short-term memory in soft body dynamics as
a computational resource.” Journal of The Royal Society
Interface Vol. 11 No. 100 (2014): p. 20140437.

Copyright © 2025 by ASME



(71

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Nakajima, Kohei, Hauser, Helmut, Li, Tao, and Pfeifer,
Rolf. “Exploiting the dynamics of soft materials for machine
learning.” Soft robotics Vol. 5 No. 3 (2018): pp. 339-347.
Degrave, Jonas, Caluwaerts, Ken, Dambre, Joni, and Wyf-
fels, Francis. “Developing an embodied gait on a com-
pliant quadrupedal robot.” 2015 IEEE/RSJ international
conference on Intelligent Robots and Systems (IROS): pp.
4486—4491. 2015. IEEE.

Ulrich, Nathan Thatcher. “Grasping with mechanical intel-
ligence.” Technical report no. 1988.

Pfeifer, Rolf and Bongard, Josh. How the body shapes the
way we think: a new view of intelligence. MIT press (2006).
Wang, Tianyu, Pierce, Christopher, Kojouharov, Velin,
Chong, Baxi, et al. “Mechanical intelligence simplifies con-
trol in terrestrial limbless locomotion.” Science Robotics
Vol. 8 No. 85 (2023): p. eadi2243.

‘Wu, Jun, Miller, Thomas E, Cicirello, Alice, and Mortimer,
Beth. “Spider dynamics under vertical vibration and its
implications for biological vibration sensing.” Journal of
the Royal Society Interface Vol. 20 No. 206 (2023): p.
20230365.

Landolfa, MA and Barth, FG. “Vibrations in the orb web
of the spider Nephila clavipes: cues for discrimination and
orientation.” Journal of Comparative Physiology A Vol.
179 (1996): pp. 493-508.

Mortimer, Beth. “A spider’s vibration landscape: adap-
tations to promote vibrational information transfer in orb
webs.” Integrative and Comparative Biology Vol. 59 No. 6
(2019): pp. 1636-1645.

Masters, W Mitch. “Vibrations in the orbwebs of Nucte-
nea sclopetaria (Araneidae) II. Prey and wind signals and
the spider’s response threshold.” Behavioral ecology and
sociobiology Vol. 15 (1984): pp. 217-223.

Konkoli, Zoran, Nichele, Stefano, Dale, Matthew, and Step-
ney, Susan. “Reservoir computing with computational mat-
ter.” Computational matter (2018): pp. 269-293.
Nakajima, Kohei. “Physical reservoir computing—an intro-
ductory perspective.” Japanese Journal of Applied Physics
Vol. 59 No. 6 (2020): p. 060501.

Jaeger, Herbert. “The “echo state” approach to analysing
and training recurrent neural networks-with an erratum
note.” Bonn, Germany: German national research cen-
ter for information technology gmd technical report Vol.
148 No. 34 (2001): p. 13.

Maass, Wolfgang. “Liquid state machines: motivation, the-
ory, and applications.” Computability in context: computa-
tion and logic in the real world (2011): pp. 275-296.
Schrauwen, Benjamin, Verstraeten, David, and Van Camp-
enhout, Jan. “An overview of reservoir computing: theory,
applications and implementations.” Proceedings of the 15th
european symposium on artificial neural networks. p. 471-
482 2007: pp. 471-482. 2007.

Nakajima, Kohei and Fischer, Ingo. Reservoir computing.
Springer (2021).

Hauser, Helmut, Ijspeert, Auke J, Fiichslin, Rudolf M,
Pfeifer, Rolf, and Maass, Wolfgang. “Towards a theoret-

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

ical foundation for morphological computation with com-
pliant bodies.” Biological cybernetics Vol. 105 (2011): pp.
355-370.

Hauser, Helmut, Ijspeert, Auke J, Fiichslin, Rudolf M,
Pfeifer, Rolf, and Maass, Wolfgang. “The role of feedback
in morphological computation with compliant bodies.” Bi-
ological cybernetics Vol. 106 (2012): pp. 595-613.
Yamanaka, Yuki, Yaguchi, Takaharu, Nakajima, Kohei, and
Hauser, Helmut. “Mass-spring damper array as a mechani-
cal medium for computation.” International Conference on
Artificial Neural Networks: pp. 781-794. 2018. Springer.
Urbain, Gabriel, Degrave, Jonas, Carette, Benonie, Dambre,
Joni, and Wyffels, Francis. “Morphological properties of
mass—spring networks for optimal locomotion learning.”
Frontiers in neurorobotics Vol. 11 (2017): p. 16.

Dion, Guillaume, Mejaouri, Salim, and Sylvestre, Julien.
“Reservoir computing with a single delay-coupled non-
linear mechanical oscillator.” Journal of Applied Physics
Vol. 124 No. 15 (2018).

Du, Chao, Cai, Fuxi, Zidan, Mohammed A, Ma, Wen, et al.
“Reservoir computing using dynamic memristors for tempo-
ral information processing.” Nature communications Vol. 8
No. 1 (2017): p. 2204.

Yamane, Toshiyuki, Katayama, Yasunao, Nakane, Ryosho,
Tanaka, Gouhei, and Nakano, Daiju. “Wave-based reser-
voir computing by synchronization of coupled oscillators.”
Neural Information Processing: 22nd International Con-
ference, ICONIP 2015, Istanbul, Turkey, November 9-12,
2015, Proceedings Part 111 22: pp. 198-205. 2015. Springer.
Paul, Chandana. “Investigation of morphology and control
in biped locomotion.” Ph.D. Thesis, Verlag nicht ermittel-
bar. 2004.

Paul, Chandana. “Morphological computation: A basis
for the analysis of morphology and control requirements.”
Robotics and Autonomous Systems Vol. 54 No. 8 (2006):
pp- 619-630.

Caluwaerts, Ken and Schrauwen, Benjamin. “The body as
a reservoir: locomotion and sensing with linear feedback.”
2nd International conference on Morphological Computa-
tion (ICMC 2011). 2011.

Zhang, Yuning and Wang, Kon-Well. “Harnessing physi-
cal reservoir computing in nonlinear mechanical metastruc-
tures.” AIAA Scitech 2022 Forum: p. 1464. 2022.

Li, Tao, Nakajima, Kohei, Cianchetti, Matteo, Laschi, Ce-
cilia, and Pfeifer, Rolf. “Behavior switching using reservoir
computing for a soft robotic arm.” 2012 IEEE International
Conference on Robotics and Automation: pp. 4918-4924.
2012. IEEE.

Dambre, Joni, Verstraeten, David, Schrauwen, Benjamin,
and Massar, Serge. “Information processing capacity of
dynamical systems.” Scientific reports Vol. 2 No. 1 (2012):
p- 514.

Tekinalp, Arman, Kim, Seung Hyun, Bhosale, Yashraj,
Parthasarathy, Tejaswin, et al. “PyElastica.” (2023). DOI
10.5281/zenodo.7658872.  URL https://doi.org/10.5281/
zenodo.7658872.

Copyright © 2025 by ASME


https://doi.org/10.5281/zenodo.7658872
https://doi.org/10.5281/zenodo.7658872
https://doi.org/10.5281/zenodo.7658872

[36]

[37]

[38]

[39]

[40]

Gazzola, Mattia, Dudte, LH, McCormick, AG, and Mahade-
van, Lakshminarayanan. “Forward and inverse problems in
the mechanics of soft filaments.” Royal Society open science
Vol. 5 No. 6 (2018): p. 171628.

Zhang, Xiaotian, Chan, Fan Kiat, Parthasarathy, Tejaswin,
and Gazzola, Mattia. “Modeling and simulation of complex
dynamic musculoskeletal architectures.” Nature communi-
cations Vol. 10 No. 1 (2019): pp. 1-12.

Zhang, Xiaotian, Naughton, Noel, Parthasarathy, Tejaswin,
and Gazzola, Mattia. “Friction modulation in limbless,
three-dimensional gaits and heterogeneous terrains.” Nature
communications Vol. 12 No. 1 (2021): p. 6076.

Tekinalp, Arman, Naughton, Noel, Kim, Seung Hyun,
Halder, Udit, et al. “Topology, dynamics, and control of
a muscle-architected soft arm.” Proceedings of the Na-
tional Academy of Sciences Vol. 121 No. 41 (2024): p.
€2318769121.

Bhosale, Yashraj, Weiner, Nicholas, Butler, Alex, Kim, Se-
ung Hyun, et al. “Micromechanical origin of plasticity and
hysteresis in nestlike packings.” Physical review letters Vol.
128 No. 19 (2022): p. 198003.

[41]

[42]

[43]

[44]

[45]

Naughton, Noel, Sun, Jiarui, Tekinalp, Arman,
Parthasarathy, Tejaswin, et al. “Elastica: A compliant
mechanics environment for soft robotic control.” [EEE
Robotics and Automation Letters Vol. 6 No. 2 (2021): pp.
3389-3396.

Chang, Heng-Sheng, Halder, Udit, Shih, Chia-Hsien,
Naughton, Noel, et al. “Energy-shaping control of a mus-
cular octopus arm moving in three dimensions.” Proceed-
ings of the Royal Society A Vol. 479 No. 2270 (2023): p.
20220593.

Shih, Chia-Hsien, Naughton, Noel, Halder, Udit, Chang,
Heng-Sheng, et al. “Hierarchical control and learning of
a foraging cyberoctopus.” Advanced Intelligent Systems
Vol. 5 No. 9 (2023): p. 2300088.

Naughton, Noel, Tekinalp, Arman, Shivam, Keshav, Kim,
Seung Hung, et al. “Neural reservoir control of a soft bio-
hybrid arm.” arXiv preprint arXiv:2503.09477 (2025).
Dale, Matthew, Miller, Julian F, Stepney, Susan, and Trefzer,
Martin A. “A substrate-independent framework to character-
ize reservoir computers.” Proceedings of the Royal Society
A Vol. 475 No. 2226 (2019): p. 20180723.

Copyright © 2025 by ASME



	1 Introduction
	2 Computing with Physical Dynamics
	3 Fiber Network Simulations
	3.1 Simulation setup
	3.2 Simulation results

	4 Experimental Validation
	4.1 Experimental setup
	4.2 2 ×2 fiber network results
	4.3 Scaling fiber network size

	5 Conclusion

