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Accelerated, physics-inspired inference of
skeletal muscle microstructure from
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Abstract— Muscle health is a critical component of overall
health and quality of life. However, current measures of
skeletal muscle health take limited account of microstruc-
tural variations within muscle, which play a crucial role in
mediating muscle function. To address this, we present a
physics-inspired, machine learning-based framework for
the non-invasive estimation of microstructural organization
in skeletal muscle from diffusion-weighted MRI (dMRI) in
an uncertainty-aware manner. To reduce the computational
expense associated with direct numerical simulations of
dMRI physics, a polynomial meta-model is developed that
accurately represents the input/output relationships of a
high-fidelity numerical model. This meta-model is used to
develop a Gaussian process (GP) model that provides voxel-
wise estimates and confidence intervals of microstructure
organization in skeletal muscle. Given noise-free data, the
GP model accurately estimates microstructural parameters.
In the presence of noise, the diameter, intracellular diffu-
sion coefficient, and membrane permeability are accurately
estimated with narrow confidence intervals, while volume
fraction and extracellular diffusion coefficient are poorly
estimated and exhibit wide confidence intervals. A reduced-
acquisition GP model, consisting of one-third the diffusion-
encoding measurements, is shown to predict parameters
with similar accuracy to the original model. The fiber diame-
ter and volume fraction estimated by the reduced GP model
is validated via histology, with both parameters accurately
estimated, demonstrating the capability of the proposed
framework as a promising non-invasive tool for assessing
skeletal muscle health and function.

Index Terms— Diffusion-weighted MRI, Gaussian process,
meta-model, microstructure, skeletal muscle

I. INTRODUCTION

Muscle health is strongly correlated to quality of life [1],
[2], motivating a clinical need for interventional methods and
quantitative diagnostics focused on its staging and improvement.
This need is particularly acute for aging populations, as age-
related loss of muscle mass is a primary determinant of

This work was supported in part by an NSF GRFP (N.N.), the R.A.
Pritzker endowed chair (J.G.), NSF grants CMMI-1437113 & CMMI-
1762774 and NIH grants HL090455 & EB018107 (J.G.).

Noel Naughton is with the Department of Mechanical Engineering
at Virginia Tech, Blacksburg, VA and was previously with the Beckman
Institute for Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, IL (e-mail: nnaughton@vt.edu).

Stacey Cahoon and John G. Georgiadis are with the Department of
Biomedical Engineering, Illinois Institute of Technology, Chicago IL.

Brad Sutton is with the Beckman Institute for Advanced Science and
Technology, University of Illinois at Urbana-Champaign, Urbana, IL.

decreased muscle function and mobility [3], both of which
are linked to increased mortality [4]. Skeletal muscle exhibits
a hierarchical structure of elongated, tightly-packed muscle
fibers that are surrounded by multiple levels of collagenous
extracellular matrix, which plays an important role in force
transmission [5]. However, traditional measures of muscle
health take limited account for these structural features,
restricting our understanding of muscle’s structure-function
relationship [6]. Non-invasive measurement of skeletal muscle
structure is thus positioned to enable novel insights into the
physiological changes of muscle during aging [7] or muscle
pathology [8], aiding the development of effective, targeted
treatments to increase muscle health.

Currently, biopsy and histology is the most common modality
to quantitatively investigate skeletal muscle microstructure,
but this measurement approach is invasive, labor-intensive,
and highly local to the excised muscle region. A promis-
ing alternative with potential to address these limitations is
diffusion-weighted magnetic resonance imaging (dMRI), which
can provide in-vivo, non-invasive characterization of muscle
microstructure organization over the entire muscle volume.
dMRI is sensitive to the direction-dependent diffusion distance
of water in tissue. In muscle, water diffuses faster in the fiber’s
axial direction than transverse direction, where barriers such as
cell walls restrict diffusion. This results in anisotropic diffusion
behavior that sensitizes the voxel’s MR signal to these ∼µm
length-scale structures. Thus, although the resolution limit of
clinical dMRI is ∼mm, the underlying tissue microstructure is
encoded in the MR signal of each voxel.

Estimation of microstructural features from dMRI data has
received extensive attention in the brain, with a particular
focus on white matter organization [9], [10]. However, while
both neural white matter and skeletal muscle share a similar
gross morphology of long, axially aligned fibers, decoding
the relationship between skeletal muscle microstructure and
dMRI measurements is not as simple as applying neural
tissue models to skeletal muscle. Skeletal muscle’s larger fiber
diameter (∼50 µm [11] vs axon’s <2 µm [12]) and increased
membrane permeability [13] substantially complicates the
underlying diffusion physics [14], necessitating use of high-
fidelity numerical models to accurately capture the physical
dynamics of diffusion MRI in muscle [15]–[21].

While these numerical models have successfully explored
the forward problem of how microstructure variation influences
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Fig. 1: In-silico experiments of skeletal muscle dMRI. (a) Schematic of the generalized diffusion sequence used to represent
the diffusion-encoding sequence. (b) Schematic of numerical model of skeletal muscle as periodically packed hexagonal
cylinders. (c) Overview of numerical simulation process with the generation of a pulse sequence and microstructural domain,
the independent simulation of multiple diffusion directions, construction of diffusion tensors, and finally estimation of dMRI
metrics. (d) Overview of meta-model approach where the microstructural and pulse sequence parameters are directly mapped to
the dMRI metrics. Here standard DTI metrics are used, but more complex diffusion models can be straightforwardly included.

dMRI signal [20], [22]–[25], the inverse problem of estimating
microstructural parameters from dMRI data remains unresolved.
Numerical models are, in general, too computationally ex-
pensive to serve as the basis of an inverse solution while
compartmental models, originally developed for neural tissue
[26] but also at times applied to muscle [27]–[31], are based
on assumptions regarding low permeability and small fiber
size that do not hold in skeletal muscle, causing them to
inaccurately model diffusion physics in muscle [32] and thus
be inappropriate for skeletal muscle applications. More recently,
the Random Permeable Barrier Model (RPBM) has been
proposed, which abstracts muscle as a domain of random,
permeable barriers [33], [34] and is sensitive to changes due
to increased exercise, muscle atrophy, and muscular dystrophy,
among others [34], [35]. However, the RPBM’s basis in a
reduced-order physical model limits its ability to be extended
to incorporate additional microstructural features. For example,
its parameterization of muscle does not account for differences
in the intracellular and extracellular domain, which is necessary
if changes in the extracellular matrix, a critical mediator of
skeletal muscle function [5], are to be considered. Thus, there
remains a need for new approaches to characterizing the
microstructural organization of skeletal muscle from dMRI.

To address this need, in this paper we combine the accuracy
and realism of physics-based numerical models with the
computational speed of analytical and data-driven models
to develop a framework for estimating the microstructural
organization of skeletal muscle from dMRI measurements.
In Section II, we describe a numerical physics model of
how microstructure and dMRI pulse features influence dMRI
measurements (the ‘forward problem’). To accelerate time-to-
solutions, we propose a meta-model framework for the forward
problem that achieves orders of magnitude faster solutions
while retaining a high degree of fidelity to the physics-based
numerical model that drives it. In Section III, we describe

a method to estimate the microstructure of skeletal muscle
within a voxel given a set of dMRI measurements (the ‘inverse
problem’). To accomplish this, we adopt a data-driven approach
that leverages the physics-inspired meta-model of Section II.
In Section IV, we experimentally demonstrate the viability of
the proposed model before proceeding in Sections V and VI
with a discussion and conclusion.

Overall, this work provides a flexible framework for develop-
ment of physics-inspired inversion models for the non-invasive
estimation of tissue microstructure from dMRI measurements
in an uncertainty-aware manner. While applied here to skeletal
muscle modeled using a simplified periodic domain, this
methodology is broadly applicable to many classes of biological
tissues such as neural and cancer tissues.

II. FAST EVALUATION OF DMRI METRICS IN MUSCLE

To understand how a voxel’s diffusion MRI (dMRI) signal
can be used to estimate the underlying microstructural organi-
zation of skeletal muscle, we first consider the forward problem
of how microstructural variations influence the dMRI signal,
the solution of which will form the basis of the inverse method
to estimate microstructure from dMRI.

A. Forward problem parameterization
Bloch-Torrey equation: dMRI physics is governed by the

Bloch-Torrey equation [36], which describes the time evolution
of the dMRI signal in a voxel as

∂M

∂t
= −iγ (x · g(t))M +∇ · (D(x)∇M) (1)

where M(x, t) is the complex-valued, transverse spin mag-
netization resulting from exciting longitudinal spins onto the
transverse plane and which is manipulated by an externally
applied magnetic field (x · g(t)). Here γ is the gyromagnetic
ratio of hydrogen, x is the spin position vector, g(t) is the
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time-varying magnetic field gradient vector used to encode
diffusion, and D(x) is the local diffusion coefficient.

Pulse sequence parameterization: The magnetic field gra-
dient g(t) is operator-controlled and can be manipulated to
probe different aspects of tissue structure [37]. We focus on
two related diffusion-encoding pulse sequences: the Stejskal-
Tanner pulsed-gradient spin echo (PGSE) [38] and the simulated
echo acquisition mode (STEAM) diffusion sequence [39].
If T1 and T2 effects are set aside, both sequences can be
minimally described by the generalized diffusion-weighted
sequence described in Fig. 1a that consists of a bipolar
magnetic gradient pulse of magnitude G [25], [40]. This
generalized sequence is parameterized by four variables, echo
time (TE), gradient duration (δ), gradient spacing (∆), and
b-value (b = γ2G2δ2(∆ − δ/3)). Here, gradient duration is
fixed at 5 ms and TE is defined as TE = ∆+δ, resulting in two
free variables of gradient spacing and b-value. The diffusion
time of the spins is td = ∆ − δ/3. However, because our
fixed gradient duration of 5 ms is short relative to the gradient
spacing timings considered here, for simplicity we approximate
the gradient spacing as the diffusion time (i.e. td = ∆).

Muscle tissue model parameterization: At the microstructural
level, skeletal muscle consists of parallel, elongated fibers, each
surrounded by a semi-permeable membrane (sarcolemma) and
embedded in an extracellular matrix. Informed by histologically
based simulations [21], we represent muscle’s microstructural
organization via a compact domain of infinitely long, parallel
hexagonal cylinders arranged in a periodic array (Fig. 1b).
We define a representative elemental volume (REV), which
we parameterize to provide a parsimonious description of
the muscle microstructure consisting of two morphological
parameters (fiber diameter and muscle fiber volume fraction)
and three tissue parameters (membrane permeability and intra-
/extracellular diffusion coefficients). Water diffusion in the intra-
and extracellular domains is characterized by homogeneous
(effective) diffusion coefficients that capture the cumulative
effects of sub-cellular restrictions within each domain.

B. Physics-based numerical simulations

The governing Bloch-Torrey equation of Eq. 1 is integrated
using the lattice Boltzmann method (LBM) on a D3Q7
stencil, supplemented with appropriate boundary conditions
and the initial condition M(x, t = 0) = 1. Intra-domain,
semi-permeable boundary conditions handle the effect of
spins crossing the muscle’s sarcolemma membrane while
appropriately-defined periodic boundary conditions are applied
on the domain boundaries to represent a periodic REV geometry.
Full details of both the boundary conditions and the numerical
lattice Boltzmann scheme implementation are available in [21].

Solving the Bloch-Torrey equation over the prescribed
domain results in a spatially localized distribution of the
MR signal M(x, t = TE) (see Fig. 1c). In a physical
MR experiment, image formation integrates this local signal
distribution to provide the voxel’s dMRI signal. Integrating the
numerical simulation result over the simulation domain

S =

∣∣∣∣∣∣∣∣∫
V

M(x, t = TE)dx
∣∣∣∣∣∣∣∣ (2)

TABLE I: Microstructure and pulse sequence parameter ranges
spanned by meta-model.

Parameter Range

Muscle fiber diameter 10 – 80 µm
Volume fraction 0.7 – 0.95
Membrane permeability 10 – 100 µm/s
Intracellular diffusion 0.5 – 2.5 µm2/ms
Extracellular diffusion 0.5 – 2.5 µm2/ms

Diffusion time 10 – 750 ms
b-value 300 – 1200 s/mm2

where V is the voxel volume allows matching the MR signal
that would be measured on a scanner. This equivalence enables
in silico dMRI experiments, where a known microstructural
domain can be defined and a dMRI experiment performed to
computationally evaluate the signal.

A schematic overview of the simulation pipeline for these
in silico experiments is given in Fig. 1c. For each experi-
ment, six non-collinear gradient directions (Si) and a non-
diffusion-weighted acquisition (S0) are simulated and used
to fit a diffusion tensor using the fanDTasia ToolBox [41].
In muscle, the diffusion tensor is anisotropic and described
by three eigenvalues (λ1, λ2, and λ3), which correspond to
the tensor’s principal directions. These eigenvalues are then
used to compute the tensor invariants of fractional anisotropy
FA =

√
(λ1−λ2)2+(λ2−λ3)2+(λ3−λ1)2

2(λ2
1+λ2

2+λ2
3)

, mean diffusivity MD =
(λ1 + λ2 + λ3)/3, and radial diffusivity RD = (λ2 + λ3)/2,
which characterize the diffusion anisotropy and magnitude
within the voxel. While in this work we use a standard diffusion
tensor imaging (DTI) model, more complex post-processing
and diffusion models can straightforwardly be incorporated.

C. Model acceleration via meta-modeling
While accurate, numerical simulation of the forward problem

is computationally expensive, with a typical in silico dMRI
experiment taking 1-2 minutes per voxel. Coupled with direct
inverse solution approaches, which require many iterative
forward solutions, use of this numerical model results in
solution times on the order of 45 minutes per voxel to estimate
underlying microstructural parameters [42]. Scaled to a typical
64×64 (or larger) resolution dMRI image with multiple slices,
this approach quickly becomes computationally infeasible.

To increase solution speed, we exploit the insight that the
intermediate steps of Fig. 1c—which are computationally
expensive to obtain—are in fact only necessary to estimate a
diffusion tensor for the tissue and can be bypassed (Fig. 1d)
by the deployment of a physics-inspired data-driven forward
mapping

F : (M,P) 7→ D (3)

that directly maps the microstructural (M ∈ Rm) and diffusion-
encoding sequence (P ∈ Rp) domains to the dMRI metrics
(D ∈ Rd). Beyond computational efficiency, this mapping
entails a number of advantages. In particular, by directly
estimating the diffusion tensor eigenvalues and other metrics,
it is not sensitive to the number and direction of the diffusion-
encoding gradient measurements while retaining the physical
information of the numerical model it is based on.
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Fig. 2: Meta-model acceleration of dMRI simulations. (a) Density plots of meta-model error for dMRI metrics of FA, MD,
RD, λ1, λ2, and λ3. Solid colors denote a polynomial meta-model while dashed lines are for a feed-forward neural network
meta-model. As the order of the polynomial basis set increases, the meta-model accuracy improves. (b) Global sensitivity
indices of the 7th-order meta-model (solid color) and LBM numerical model (white) demonstrating the meta-model captures the
global behavior of parameter variation. Results for λ2 and λ3 and not shown as they are nearly identical to RD results. (c) The
computational cost of meta-model evaluation increases with polynomial order but remains lower than the numerical model in
all cases. The 7th-order meta-model has a mean evaluation time three orders of magnitude (1000x) faster than the numerical
model and a maximum evaluation time five orders of magnitude faster. All models were evaluated on a machine with an Intel
Xeon W-2265 processor.

Polynomial meta-model: We approximate the forward map-
ping F using a set of meta-models to generate individual
mappings for each dMRI metric

F̂ = {f̂i(x,p) : i ∈ D} (4)

for D ∈ {FA, MD, RD, λ1, λ2, λ3} and where x ∈ M and p ∈
P . These meta-models (Fig. 1d) approximate the relationship
between the m = 5 microstructural features (Fig. 1b) and
p = 2 dMRI pulse sequence parameters (b-value and diffusion
time; Fig. 1a) and the d = 6 dMRI metrics in a data-driven
manner with no explicit dependence on the underlying physics.

While a number of meta-modeling frameworks [43] and
machine learning techniques [44], [45] are available, here we
adopt a polynomial expansion approach [46], [47]. Each meta-
model is represented as an expansion of a properly selected
polynomial basis truncated to a finite basis set

f̂i(x,p) =

T∑
j=0

αj ψj(z) (5)

where αj are the basis weights, ψj are multivariate polynomials,
T = (N + C)!/(N ! C!) − 1 is the number of terms in the
basis set for a maximum polynomial order of C and N =
m + p input parameters, and z = Γ(x,p) ∈ [−1, 1]N is the
linear transformation of the microstructure and pulse sequence
parameter ranges given in Table I to the interval [−1, 1] (e.g.
for a single parameter x ∈ [a, b], the transformation would
be 2(x–a)/(b–a)–1). The choice of basis polynomials ψj is

determined by the parameter distribution. To ensure even and
unbiased coverage of the microstructural and pulse sequence
input ranges in Table I, a uniform distribution is considered,
for which Legendre polynomials are the appropriate basis [48].

Meta-model generation: To generate the meta-model, a set
of 80,000 in silico dMRI experiments were performed using
the LBM numerical model (Fig. 1c). For each simulation, a
tissue domain parameterized by five microstructural features
was defined (Fig. 1b) over which a dMRI measurement defined
by the two pulse sequence features was numerically simulated
and processed (Fig. 1a), resulting in a set of six dMRI
metrics. Microstructure and pulse parameter combinations
were generated via a Sobol sampling method, which is a
low discrepancy sampling method, meaning the input data
used to construct the model are evenly distributed across
the input space [49]. The resulting dataset was used to fit
the weights αj of the PC expansion using a 70/30 train/test
split. Data was fit using least-squares linear regression by the
open-source ChaosPy Python package [50]. Each dataset entry
consists of a microstructural parameter set x, a pulse sequence
parameter set p, and dMRI metrics fi(x,p) for i ∈ D that
resulted from an in silico dMRI experiment following the
procedure described in Section II-A. Maximum polynomial
orders C ∈ {3, ...7} of the Legendre polynomial basis were
considered. To provide a baseline comparison, a multi-layer
perceptron regression model was trained on the same data set.
The regression model consisted of a feedforward neural network
with three fully connected hidden layers of 200 neurons and
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ReLU activation units. The input to the model is the normalized
microstructural parameters while the output is the dMRI metric
under consideration. The model was trained using the same
70/30 test/train data split as the polynomial meta-model using
the Adam optimizer with a constant learning rate of 0.001
for 200 iterations using the scikit-learn package in Python. A
separate neural network model was trained for each dMRI
metric.

Accuracy and sensitivity: Evaluating the trained meta-models
over the test data resulted in a vector of meta-model estimates f̂i
and an associated vector of ground-truth, numerically-simulated
dMRI metrics fi. To quantify the accuracy of the meta-model
we consider the accuracy of each dMRI metric independently
and define a relative error metric

ei =
f̂i(x,p)− fi(x,p)

f̄i
(6)

where f̄i is the mean of the vector fi.
Figure 2a shows the distribution of relative error between

the meta-models and the ground-truth numerical simulations
in the test split of the data set for each dMRI metric. For
increasing polynomial order, the accuracy of the meta-model
improves, with the 7th-order polynomial model the most
accurate overall, slightly outperforming the neural network
meta-model implementation. While we use the polynomial
meta-model throughout the rest of this paper due to its higher
overall performance, we note that both approaches provide
a level of performance sufficient to accurately represent the
underlying numerical model, with errors on the order of <1%
for all metrics. A limitation on polynomial order comes from the
risk of overfitting. Here the training data set contained 56,000
entries while the number of coefficients for the maximum
polynomial size of 7th-order was T = 3431 for N = 7 (input
parameters) and C = 7 (polynomial order). Using a heuristic
of 10 entries per free parameter to avoid overfitting suggests
that 7th-order polynomials is the maximum order that should
be used (T = 6434 for an 8th-order polynomial).

To further quantify the performance of the meta-model, the
sensitivity of the meta-model to changes in its microstructure
and pulse sequence parameter inputs was computed and
compared to a previously reported sensitivity analysis of the
Bloch-Torrey equation [25]. The results, shown in Fig. 2b,
show the relative importance of each microstructural feature
on the dMRI metrics. Further, the computed sensitivity indices
of the meta-model are nearly identical to those of the full
numerical model, demonstrating that the fitted meta-model
accurately captures the global responses of the underlying
numerical model for each microstructural input parameter.

Computational efficiency: As the polynomial order increases,
the accuracy of the meta-model increases, but so too does
the computational evaluation time (Fig. 2c). However, the
trained meta-models are drastically faster to evaluate than the
underlying LBM numerical model for all polynomial orders,
with the mean evaluation time of the 7th-order meta-model
three orders of magnitude faster than the mean evaluation time
of the numerical model. This speed-up becomes even more
pronounced when maximum evaluation time is considered, with
the 7th-order meta-model five orders of magnitude faster than

the numerical model. The time-stepping nature of the LBM
numerical model leads to its evaluation time being directly
proportional to the diffusion time of the simulated sequence.
The analytical nature of the meta-model, in contrast, removes
this limitation, leading to more uniform evaluation times.

While the results of Fig. 2a suggest that for best accuracy the
highest possible polynomial order should be used, incorporating
consideration of the computational expense of increasing
polynomial order suggests the optimal polynomial order will be
case-specific based on the number of training samples available,
the compute budget available for fitting and evaluation, and the
desired accuracy of the meta-model. In the next section, both
5th- and 7th-order polynomial meta-models are used. This allows
maximum accuracy (7th-order) with the possibility of a 5-7x
speedup in evaluation speed (5th-order) when necessary (while
maintaining a lower, yet still acceptable level of accuracy).

III. INVERSE PROBLEM SOLUTION

We next turn to the inverse problem of estimating an
individual voxel’s microstructural organization based on a set of
dMRI measurements. That is, we ask if we can ‘invert’ the flow
of data in the forward model to identify what microstructure
yielded a set of dMRI measurements. This inverse model will
take as its input the values of a dMRI experiment and provide as
its output a quantitative estimate of microstructural parameters.
Previous attempts have generally consisted of iteratively solving
a forward model to converge on a set of microstructural
parameters [27]–[31], [34], [42]; however, such approaches are
computationally expensive due to the large number of function
evaluations required. Our approach is to instead define a data-
driven inverse map

G : S 7→ M (7)

that directly maps the dMRI measurement domain S ∈ Rs×d

to the microstructure parameter domain M ∈ Rm. Here, s is
the number of dMRI measurements (distinct combinations of
b-value and diffusion time) acquired, d is the number of dMRI
metrics, and m is the number of microstructural features that
parameterize the tissue.

While machine learning approaches have been widely used to
generate cost-effective inverse solutions for a range of problems
[44], [51], [52], many traditional approaches, such as random
forest regression or deep neural networks, do not automatically
account for uncertainty in their estimations, though substantial
recent work has sought to address this limitation [53], [54].
Accounting for such uncertainty can be critically important to
interpreting results as it provides knowledge of the confidence
one should place in the estimate. To address this need, here we
utilize Gaussian process (GP) regression, or kriging, to generate
a data-driven inverse map that also provides confidence intervals
of its predictions, substantially increasing the interpretability,
and thus utility, of the estimates [55].

A. Gaussian process regression
Each microstructural parameter is modeled as its own

Gaussian process, leading to the inverse map

G = {gi(s) : i ∈ M} (8)
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where s ∈ S is a vector containing a list of d dMRI metrics for
each of s diffusion-encoding sequences (defined in Section III-
B) and M is the domain of all five microstructural parameters.

A Gaussian process is a generalization of a Gaussian
probability distribution. It is a collection of random variables,
any finite subset of which has a joint Gaussian distribution
[56]. A Gaussian process

gi(s) ∼ GP (mi(s), ki(s, s
′)) . (9)

is defined by a mean function mi(s) and covariance function
ki(s, s

′) over the inputs s. In practice, is it common to either
subtract out the mean or directly set mi(s) = 0, allowing the
Gaussian process to be written as

gi(s) ∼ N (0, ki(s, s
′)) (10)

where N (·) denotes a normal distribution.
A key component of Gaussian process regression is the

selection of the covariance kernel function ki(s, s
′), which

can strongly influence the model’s accuracy. Progress has
been made towards automated kernel selection [57]; however
empirical kernel selection is still generally required. Here, a
radial basis function kernel and a linear kernel are combined
with a Gaussian noise kernel to form the covariance function

ki(s, s
′) =σ2

r exp

(
− 1

2l2
(s− s′)2

)
+

σ2
l (s− c)(s′ − c) + σ2

nδij

(11)

where kernel variances σ and length-scales l, c are hyperpa-
rameters tuned to maximize the log marginal likelihood of the
model over the training data. A unique set of hyperparameters
is tuned for each GP gi(s). While it is possible to incorporate
information about relationships between microstructural param-
eters (coregionalization), such methods substantially increase
the difficulty of hyperparameter optimization and often lead to
over-fitting [56]. As such, they were not considered here.

Here, training data are denoted as S and gi(S), where
S is the set of dMRI measurements (inputs) for which the
associated microstructural parameters (outputs) gi(S) are
known. Similarly, S∗ and g∗

i (S
∗) are the testing or evaluation

data, where g∗
i (S

∗) are the unknown microstructural parameters
that need to be estimated based on some measured dMRI data
S∗. For the training data, S = {s1, s2, ..., sn} is a set of dMRI
data for n voxels (or their computational equivalent from the
forward model). Each voxel si in turn consists of multiple
independent dMRI measurements as described after Eq. 8.
Similarly, for test data, S∗ = {s∗1, s∗2, ..., s∗n∗} are the dMRI
data associated with n∗ voxels. Note that the non-bolded term
gi(s) of Eqs. 9 and 10 is the general Gaussian process while the
bolded quantities gi(S) and g∗

i (S
∗) can be viewed as drawn

samples of gi(s).
The inverse problem is then formulated as follows: given

a training set of n observations of microstructure parameters
gi(S) and their corresponding dMRI measurements S, estimate
the microstructural parameter distribution g∗

i (S
∗) associated

with a set of n∗ dMRI measurements S∗ for which microstruc-
tural parameters are unknown. According to the definition of
Gaussian processes, the joint probability distribution of these

training and evaluation outputs is also Gaussian and can be
written [

gi

g∗
i

]
∼ N

(
0,

[
Ki(S,S) Ki(S,S

∗)
Ki(S

∗,S) Ki(S
∗,S∗)

])
(12)

where, Ki(S
∗,S) is the n∗ × n matrix of the covariances of

S∗ and S based on Eq. 11 (and similarly for all Ki(·, ·)).
To allow the training data information gi(S) to inform

our estimation of g∗
i , we condition the joint Gaussian prior

distribution of Eq. 12 on the training observations gi, resulting
in the posterior distribution

g∗
i |S∗,S,gi ∼ N (ḡ∗

i , cov(g
∗
i )) (13)

where the mean ḡ∗
i and covariance matrix cov(g∗

i ) are

ḡ∗
i = Ki(S

∗,S)Ki(S,S)
−1gi (14)

cov(g∗
i ) = Ki(S

∗,S∗)−Ki(S
∗,S)Ki(S,S)

−1Ki(S,S
∗)
(15)

Note that both the mean ḡ∗
i and covariance matrix cov(g∗

i ) are
solely functions of the training microstructural observations
gi, the training dMRI data S, and the observed dMRI data
S∗, all of which are known. Thus, given a set of dMRI
measurements associated with n∗ voxels S∗ = {s∗1, s∗2, ..., s∗n∗},
we can evaluate the posterior distribution to compute voxel-
wise mean estimates µi(s

∗
n) for each microstructural parameter

(Eq. 14) along with a variance σi(s
∗
n) (Eq. 15), which in turn

provides a 95% confidence interval. Each voxel is considered
independently and without regard to its neighboring voxels.

B. dMRI-inversion model formulation

To formulate an inverse mapping, a fixed set of diffusion-
encoding parameter sets must first be defined. Because multi-
ple microstructural parameters are being estimated, multiple
diffusion-encoding measurements are required to constrain the
inverse problem. Here, we focus on the effect of diffusion
time and b-value. Multiple b-values provides sensitivity to
non-Gaussianity of the diffusion behavior [58] while varying
diffusion time sensitizes the diffusion behavior to microstruc-
tural features at different length scales [34], [59], [60].

Five b-values (400, 600, 800, 1000, and 1200 s/mm2) and six
diffusion times (20, 50, 100, 200, 400, 700 ms) were selected
to generate s = 30 unique diffusion-encoding parameter
sets. Here, all sequences are modeled as STEAM sequences
represented by the generalized diffusion sequence described in
Section II-A. The b-value is achieved by adjusting the diffusion-
encoding gradient strength. Both b-values and diffusion times
were selected to span the ranges viable for a clinical scanner
using a STEAM sequence for skeletal muscle dMRI.

Model training and evaluation: To generate training data for
the GP model, the 7th-order meta-model was sampled using
a Sobol sequence to generate 9000 microstructural parameter
combinations. For each combination, the meta-model was
evaluated for thirty diffusion-encoding parameter sets, resulting
in 270,000 forward problem evaluations. For each diffusion-
encoding, FA, λ1, and RD were computed and used as inputs
to the model (λ2 and λ3 were not considered due to their
similarity to RD and MD is a linear combination of λ1 and
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Fig. 3: Gaussian process inverse mapping. (a) Error density of GP model when evaluating synthetic, noise-free dMRI
measurements. (b) Error density of GP model when evaluating noisy dMRI measurements with a diffusion-to-noise ratio of 30.
(c) GP model results for dMRI measurements (DNR=30) when a single microstructural parameter is varied at a time. For each
column, 200 meta-model evaluations were made as the varied microstructure parameter was linearly increased. Results are
organized column-wise with vertical alignment relating to the same dMRI measurement and the dashed line denoting the true
microstructural value.

RD). To reduce the dimensionality of the input data, these ninty
inputs were combined into a single vector for each parameter
set, and principal component analysis (PCA) was performed
on the vectors. The 20 dimensions that best described the
observed input variance were selected, scaled to zero-mean
and unit-variance, and used as the inputs to the GP model.

The meta-model produces noise-free estimates of dMRI
metrics; however, accounting for the influence of noise in
dMRI measurements is a critical consideration of any inverse
solution [61] and so synthetic noise was injected into the
training data. The meta-model directly outputs dMRI metrics,
bypassing the computationally expensive simulation of the raw
signal within the tissue domain, which is the stage in a physical
experiment where noise is introduced into the measurement.
As such, it is not possible to incorporate noise directly into the
raw signal. Instead, Gaussian noise is injected into the dMRI
metrics based on a diffusion-to-noise (DNR) ratio. Five copies
of the dMRI metrics were created. One remained noise-free
with noise added to the others to achieve a DNR of 30.

The open-source GPy Python package was used to fit the
GP model and optimize the GP kernel hyperparameters using
the L-BFGS-B algorithm [62]. For large data sets such as those
considered here, this optimization can be slow. To accelerate
the process, subsets of increasing size containing only noise-
free data were iteratively used to optimize the hyperparameters
over smaller data sets, allowing the GP model to quickly learn
the coarse structure of the underlying data. In total, model
training took an average of 2.2 hours for each microstructural
parameter (13.2 hours total) using a machine with 2x Intel

Xeon E5-2698 processors and 1024 GB of DDR4 RAM.
GP model accuracy: The 7th-order meta-model was sampled

using a testing set of 3000 microstructural parameter combi-
nations determined by a different Sobol sequence. Evaluating
the test data resulted in vectors of mean microstructural
estimates µi for i ∈ M and associated vectors of ground-truth
microstructural values xi. To quantify GP model accuracy, we
define the relative error metric

e =
µi(s)− xi(s)

x̄i
(16)

where xi(s) is the true microstructural parameter. The accuracy
of the model was quantified against both noise-free (Fig. 3a) and
noisy (DNR = 30; Fig. 3b) versions of the test data. While the
accuracy of microstructural estimates decreases in the presence
of noise, the GP model’s high accuracy when given noise-free
data demonstrates both the general invertibility of the problem
and that the GP model is learning the underlying data structure.

A third test is depicted in Fig. 3c wherein test data is
generated by evaluating the forward meta-model and varying
only a single microstructural parameter at a time (diagonal
entries) while holding all others constant. As Fig. 3c shows,
the GP model is able to accurately capture changes in fiber
diameter, membrane permeability, and intracellular diffusion
coefficient while struggling to identify variations in the volume
fraction or extracellular diffusion coefficient. However, the
GP model’s confidence intervals in its mean estimate of the
volume fraction and extracellular diffusion coefficient are wide,
indicating the mean parameter estimate should be interpreted
with caution. In contrast, its accurate estimates of fiber diameter,
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Fig. 4: Optimized diffusion-encoding sequence selection. (a) Convergence of CMA-ES algorithm’s maximization of the
objective function over 2000 iterations to select a compact set of ten diffusion-encoding sequences. (b) Map of the variance
between the 1024 different microstructural parameters used for different diffusion time and b-value combinations. The locations
of the sequence used for the full GP model (black boxes; b=1200 s/mm2 not visualized) and ten sequences selected by the
CMA-ES algorithm (red circles) are overlaid. (c) Comparisons of the relative error histograms of the full and reduced sequence
GP models for all microstructural parameters shows limited loss in accuracy when the reduced set of sequences are used.

membrane permeability, and intracellular diffusion coefficient
are accompanied by comparably narrower confidence intervals,
indicating confidence in the mean estimate.

C. Reduced diffusion-encoding model

While it is broadly known how different diffusion-encoding
pulse profiles affect the MR signal [58], which combinations of
sequences encode the most microstructural information about
the tissue is less clear. In the prior section, this uncertainty is
addressed by densely sampling the possible combinations of
diffusion time and b-value (Fig. 4b). However, because imaging
time is proportional to the total number of diffusion-encoding
parameter sets utilized, reducing the number of parameter sets
used is paramount for clinical translatability.

To identify a compact set of diffusion-encoding sequences,
the 5th-order meta-model (for computational efficiency) was
sampled at four uniformly spaced points for all five microstruc-
tural parameters (N = 1024) and FA, MD, RD, and λ1 metrics
were precomputed for 80 pulse sequences defined on a grid
of four evenly-spaced b-values between 400 and 1000 s/mm2

and twenty evenly-spaced diffusion times between 10 and 700
ms. For a candidate subset of s = 10 sequences, a 3rd-order
polynomial surface was fit to the dMRI metrics at each of
the N microstructural parameter sets. The fitted surface was
evaluated at all 80 pulse sequences resulting in a vector qin for
i ∈ {FA, MD, RD, λ1} that was compared to the precomputed
meta-model dMRI metrics Qin . An objective function was
defined to quantify the ability of a subset of ten diffusion-
encoding pulse sequences to capture the structural information
encoded by this full set of sequences according to

ϕ = −
N∑

n=1

∣∣∣∣∣∣(||qin −Qin || : i ∈ {FA, MD, RD, λ1}
)∣∣∣∣∣∣ (17)

We maximized Eq. 17 using the non-linear, derivative-free
evolutionary search CMA-ES algorithm [63] (Fig. 4a). The ten
sequences selected by the CMA-ES algorithm were matched

to the nearest corresponding pulse sequences used to define
the previous GP model (Fig. 4b). The average r2 between the
surface qin of the selected sequences and Qin was 0.88.

Reduced GP model: A second GP model was fit using
this reduced set of sequences following the same process as
before. A comparison of the full and reduced GP model’s
accuracy is shown in Fig. 4c. To test the model’s generalization
performance, both models are tested against a dataset of 3000
solutions generated by the LBM numerical model. Results for
both models are broadly similar, with only a slight decrease
in accuracy for the reduced pulse sequence model. Using only
one-third of the diffusion-encoding measurements, this set of
s = 10 sequences defines a more experimentally plausible set
of sequences for use in a physical experiment.

IV. EXPERIMENTS

A. Voxel-wise microstructure estimation
To test the accuracy of the proposed inversion scheme, a val-

idation experiment was performed. Tissue from a bovine biceps
femoris was procured and a 7 cm sample from a unipenate
portion was excised and imaged on a Siemens Prisma 3T
scanner using a prototype diffusion-weighted STEAM sequence
with EPI readout [39]. Ten diffusion-weighted measurements
based on the sequences selected by the CMA-ES algorithm
were obtained, each with twelve gradient directions and 2
averages. Twenty slices with a 64× 64 FOV matrix and 3.4
mm isotropic voxels were acquired. For all scans, TE = 49
ms. For scans with ∆ > 500 ms, TR = 1500 ms, otherwise
TR = 1200 ms. The experiment took approximately one hour
to complete. Image data was thresholded and post-processed
with FSL [64] to compute diffusion metrics for each voxel.

This dataset (9607 voxels) was read into the reduced
GP model and used to produce voxel-wise estimates of the
microstructural parameters. Here, λ3 was used instead of RD to
better capture microstructural data based on the hypothesis that
λ3 is a stronger reflection of fiber-level transverse diffusion
behavior [65], [66]. Two ROIs were also manually defined



NAUGHTON et al.: ACCELERATED, PHYSICS-INSPIRED INFERENCE OF SKELETAL MUSCLE MICROSTRUCTURE FROM DIFFUSION-WEIGHTED MRI 9

Extracellular
diff. coeff.

0 25 50 75 100

500

1000

1500

60 80 100

500

1000

1500

0 50 100 150 200

500

1000

0.0 1.0 2.0 3.0

1000

2000

0.0 1.0 2.0 3.0

400

800

16.5 17.0 17.5 18.0

2000

4000

6000

13.0 13.5 14.0 14.5

4000

8000

27.5 28.0 28.5 29.0

2000

4000

6000

0.24 0.25 0.26

2000

4000

6000

1.0 1.05 1.1

4000

8000

0

50

100

60

80

100

0

100

200

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0
a bDiameter (μm) Volume fraction Permeability (μm/s) Intracellular diff. (μm2/ms) Extracellular diff. (μm2/ms)

Se
le

ct
ed

pa
ra

m
et

er
 m

ap
M

ea
n 

pa
ra

m
te

r
di
st
rib

ut
io
n

95
%

 c
on

fid
en

ce
in

te
rv

al

ROI #1 (GP)

ROI #2 (GP)
ROI #1 (RPBM)

ROI #2 (RPBM)

0

25

50

75
100

0.0

0.5

1.0

1.5

2.0

Diameter
(μm)

Volume
fraction

Permeability
(μm/s)

Intracellular
diff. coeff.
(μm2/ms) (μm2/ms)

Fig. 5: Experimental estimates of microstructure organization. (a) Voxel-wise estimates of all five microstructural parameters
for a single slice of the bovine biceps femoris dMRI data (top row); histograms of the distribution of the five microstructural
parameters over the entire 3D domain after thresholding to exclude outliers related to edge voxels (middle row); and distribution
of 95% confidence intervals from GP model over entire 3D domain (bottom row). (b) GP estimates and 95% confidence
intervals of all five microstructural parameters and RPBM estimates of three microstructural parameters for two ROIs.

within the 3D tissue volume, consisting of 12 and 32 voxels.
Diffusion metrics from these voxels were averaged and used
to estimate mean microstructural parameters and confidence
intervals for the ROI. Additionally, the previously proposed
Random Permeable Barrier Model (RPBM) [33], [67] was fit
to the averaged ROI data for comparison. The RPBM treats
muscle tissue as consisting of only an intracellular domain
that is intersected by randomly oriented permeable membranes
aligned in the cross-sectional plane. This parameterization
yields three microstructural features, here reported as the
diffusion coefficient, fiber diameter, and membrane permeability.
Fitting the RPBM takes 1-2 seconds per ROI or voxel.

The top row of Figure 5a shows the resulting voxel-
wise estimates of all five microstructural parameters for a
representative slice of the 3D volume. For each of the five
microstructural parameters, estimation for all 9607 voxels
took 39.18 ± 0.05 seconds (4 ms/voxel). Parameter ranges
appear consistent throughout the muscle beyond slight variation
in voxels near the edge of the tissue, where partial volume
effects likely distorted the signal. The middle row of Fig. 5a
shows histograms of the distribution of the five microstructural
parameters after thresholding to exclude outliers related to edge
voxels while the bottom row of Fig. 5a shows the distribution
of the associated 95% confidence intervals. Mean parameter
estimates have unimodal distributions with relatively small
tails while the confidence intervals exhibit a sharp minimum
bound, indicative of experimental noise limiting the confidence
of the inversion scheme. Results from the two ROIs for both
GP and RPBM estimates are reported in Fig. 5b. Diffusion
coefficient estimates are consistent between the GP and RPBM
for both ROIs, while the RPBM estimates a substantially lower
membrane permeability that is below the 95% confidence
interval of the GP model. There is mixed agreement between
the two models for fiber diameter, with estimates agreeing for
ROI #2 but the RPBM estimating a fiber diameter below the
95% confidence interval of the GP model for ROI #1.

B. Histological validation

Validation of microstructure estimates is challenging due to
the difficulty of independently measuring many of the estimated
microstructural parameters, in particular intracellular and
extracellular diffusion coefficients or sarcolemma membrane
permeability. Morphological parameters, such as fiber diameter
and volume fraction, are comparably easier to verify through
histological examination. Tissue localized to the two ROIs
was excised and fixed in 10% buffered formalin for one
week. After fixation, tissue was dehydrated, embedded in
paraffin wax, sectioned, and stained with hematoxylin and
eosin. Microscopy images were acquired at 40x magnification.
Images were processed using ImageJ [68] to binarize data, and
fiber diameters for each ROI were approximated by the median
Feret diameter using the ‘Analyze Particles’ tool in ImageJ.
During tissue processing, distortion due to tissue shrinkage can
skew measurements, possibly leading to underestimation of the
fiber diameter. As such, we interpret the measured diameter
as a lower bound of the true fiber diameter. To establish an
upper bound, binarized images were processed in Matlab with
a watershed transform to skeletonize the domain and eroded
using ImageJ to reestablish a uniformly thin extracellular space.
This processing effectively swells the fibers to fill the domain
and the Feret diameter was again measured. Lower and upper
bounds of the muscle fiber volume fraction were also computed
using this approach.

The histology bounds of the muscle fiber diameters and
volume fractions for both ROIs are reported in Table II along
with the GP model’s estimated mean and confidence intervals
for both muscle fiber diameter and volume fraction and the
RPBM’s fiber diameter estimates (the RPBM does not consider
volume fraction). The fiber diameter estimate of the RPBM
agrees with the histology bounds for ROI #2 but substantially
underestimated fiber diameter for ROI #1. The fiber diameter
estimates of the GP model, in contrast, fall within the range
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TABLE II: Diameter and volume fraction measurements of the two ROIs from histology, the GP model estimates with 95%
confidence interval (CI), and the RPBM estimates.

Fiber diameter Volume fraction
ROI Histology (bounds) GP ± 95% CI RPBM Histology (bounds) GP ± 95% CI

#1 55.2 – 73.9 µm 62.3 ± 17.0 µm 31.8 µm 0.674 – 0.894 0.894 ± 0.134
#2 51.0 – 62.0 µm 62.9 ± 17.0 µm 65.6 µm 0.514 – 0.902 0.883 ± 0.134

of the bounds provided by histology for both ROIs though
there is a relatively wide confidence interval. The GP model’s
confidence intervals of the ROIs are lower than the voxel-wise
results due to the averaging of the dMRI metrics over the
ROI increasing the SNR of the data. The upper bound of the
histology measurements of volume fraction also matches the GP
estimates. However, the wide confidence interval in both ROIs
cautions against over-interpreting the agreement as the model
is uncertain of its estimates. Overall, these results demonstrate
the GP model can provide estimates of the fiber diameter and
volume fraction that agree with histological measurements.

V. DISCUSSION

This paper presents a framework for computationally efficient
estimation of skeletal muscle microstructural parameters from
dMRI that accounts for model uncertainly. Use of Gaussian
processes (GP) in the inverse mapping provides not only voxel-
wise microstructure estimates but also uncertainty intervals,
which increases the utility and interpretability of the model’s
estimates by identifying when a microstructure estimate can
be strongly relied on or when it is likely an arbitrary guess.
There are two approaches to interpreting these confidence
intervals. The first is adopted here, where a single mean
value represents the microstructure of the entire voxel and
the confidence intervals are then a measure of uncertainty. The
second interpretation treats the predicted Gaussian distribution
as representing a distribution of parameters within the voxel (e.g.
distribution of fiber diameters). Considering the distribution of
microstructures that occur in skeletal muscle, such a perspective
may further extend the insights available from GP-based
inverse models. However, additional investigation, including in
vivo experiments, remains necessary to establish ground truth
parameter distributions and their relationship to GP model
estimates and confidence intervals.

Comparison of the GP model with the RPBM approach
over the two ROIs finds the GP model provides estimates of
additional microstructural features than the RPBM (five vs
three) and is substantially faster to evaluate per voxel (∼20
ms vs ∼1.5 s). While the two models generally agree in their
estimates of the intracellular diffusion coefficient, they diverge
in their estimates of fiber diameter and membrane permeability.
For fiber diameter, both models provide similar estimates for
ROI #1. Further, these estimates are both in line with, though
slightly above, the upper bound of fiber diameter measured from
histology. In ROI #2, however, the RPBM estimate of 32 µm is
substantially below the histology lower bound of 55 µm, while
the GP model estimate of 62 µm is squarely within the histology
bounds. This is consistent with a recent simulation study that
found the RPBM systematically underestimates muscle fiber

diameters [24]. There is little agreement between the two
models in their estimate of membrane permeability, with the
RPBM model providing a substantially lower estimate than the
GP model. Due to the lack of experimental methods to directly
measure sarcolemma membrane permeability, adjudicating the
difference in these estimates is not currently possible, leaving
the source of this discrepancy unclear and suggesting the need
for additional investigation and validation of the two models.

Given noise-free data (Fig. 3a), the GP inverse model
accurately inverts the problem for all five microstructural
parameters, indicating the GP model learns the underlying
data structure and suggesting model accuracy can be increased
if higher SNR measurements are acquired. In the presence of
noise (Fig. 3b,c), the GP inversion scheme accurately estimates
three of the five microstructural features (diameter, intracellular
diffusion coefficient, and membrane permeability). Notably,
relative performance of different features matches the sensitivity
analysis of the forward problem reported in Fig. 2b, with dMRI
metrics exhibiting comparatively higher sensitivity to changes
in diameter, intracellular diffusion coefficient, and permeability
than the two lower-performing features (volume fraction and
extracellular diffusion coefficient). This lack of sensitivity
suggests experimental measurement noise may drown out the
encoded microstructural information from these two features,
requiring either higher SNR measurements or exploration
of more advanced diffusion encoding sequences for muscle
tissue that are more sensitive to these features [69]. We note,
however, that our GP model can be straightforwardly extended
to incorporate any such advancements due to its basis in the
physics-based solution to the forward problem.

The framework developed here has a flexible, modular struc-
ture. It consists of multiple independent components, each of
which can be refined or exchanged with alternative approaches
to improve future iterations. For example, incorporating more
sophisticated parameterizations of muscle microstructure will
further improve the realism of the forward problem. The
diffusion-encoding schemes considered here can also be
advanced by increasing the fidelity of the PGSE and STEAM
sequence simulations or by considering additional diffusion-
encoding sequences such as OGSE [70]. Improving these
components would require retraining the forward polynomial
meta-model. This is a limitation of the current approach
and motivates possible future incorporation of alternative
meta-modeling techniques. For example, deep neural network
architectures can provide capabilities such as fine-tuning to
flexibly incorporate continual improvement of the forward
model given improved data [71] or even transfer learning [72]
for consideration of different tissue classes such as cancerous
tumors [73]. Finally, combining diffusion-encoding sequence
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optimization with compressed sensing frameworks may allow
further reduction in the diffusion-encoding sequences needed,
aiding in clinical feasibility and translatability efforts by further
reducing imaging time. Changes in the imaging parameters or
the forward model will necessitate retraining the inverse model.
However, given the total training time of 12-14 hours, such a
limitation is not overly prohibitive. Future improvements may
additionally consider faster computers and introducing input
transformation layers that can accommodate arbitrary imaging
parameters.

VI. CONCLUSION

Overall, this work provides a flexible, modular framework for
development of physics-inspired, data-driven, and uncertainty-
aware inversion models for the estimation of tissue mi-
crostructure from dMRI. To reduce the computational expense
associated with direct numerical simulations of dMRI physics, a
polynomial meta-model is developed that accurately represents
the numerical model and is used to develop a Gaussian
process regression model to provide voxel-wise microstructural
estimates and confidence intervals. The proposed methodology
is broadly applicable to additional classes of biological tissues
such as neural and cancer tissues, extending its potential
impact. Applied here to skeletal muscle, its experimental
implementation and validation demonstrate the capability of
the framework as a promising non-invasive tool for in vivo
assessment of skeletal muscle health and organization.

Data Availability: Code and model weights for the meta-model
and Gaussian process regression models presented in this work
are available online at https://github.com/nmnaughton/dMRI-muscle-
inverse.
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