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Abstract
Motivated by the need to interpret the results from a combined use of in vivo brain Magnetic
Resonance Elastography (MRE) and Diffusion Tensor Imaging (DTI), we developed a
computational framework to study the sensitivity of single-frequency MRE and DTI metrics to
white matter microstructure and cell-level mechanical and diffusional properties. White matter
was modeled as a triphasic unidirectional composite, consisting of parallel cylindrical inclusions
(axons) surrounded by sheaths (myelin), and embedded in a matrix (glial cells plus extracellular
matrix). Only 2D mechanics and diffusion in the transverse plane (perpendicular to the axon
direction) was considered, and homogenized (effective) properties were derived for a periodic
domain containing a single axon. The numerical solutions of the MRE problem were performed
with ABAQUS and by employing a sophisticated boundary-conforming grid generation scheme.
Based on the linear viscoelastic response to harmonic shear excitation and steady-state diffusion in
the transverse plane, a systematic sensitivity analysis of MRE metrics (effective transverse shear
storage and loss moduli) and DTI metric (effective radial diffusivity) was performed for a wide
range of microstructural and intrinsic (phase-based) physical properties. The microstructural
properties considered were fiber volume fraction, and the myelin sheath/axon diameter ratio. The
MRE and DTI metrics are very sensitive to the fiber volume fraction, and the intrinsic viscoelastic
moduli of the glial phase. The MRE metrics are nonlinear functions of the fiber volume fraction,
but the effective diffusion coefficient varies linearly with it. Finally, the transverse metrics of both
MRE and DTI are insensitive to the axon diameter in steady state. Our results are consistent with
the limited anisotropic MRE and co-registered DTI measurements, mainly in the corpus callosum,
available in the literature. We conclude that isotropic MRE and DTI constitutive models are good
approximations for myelinated white matter in the transverse plane. The unidirectional composite
model presented here is used for the first time to model harmonic shear stress under MRE-relevant
frequency on the cell level. This model can be extended to 3D in order to inform the solution of the
inverse problem in MRE, establish the biological basis of MRE metrics, and integrate MRE/DTI
with other modalities towards increasing the specificity of neuroimaging.

1. Introduction

Constituting approximately 50% of the brain and 60%–80% of the spinal cord in humans, white matter
(WM) is highly significant in disease or senescence (Saab and Nave 2017, Fern 2017). Loss in WM integrity is
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a core feature of multiple sclerosis, traumatic brain injury, and vascular dementia. Brain imaging indicates
that damages in myelinated axons precede most neurodegenerative diseases like Alzheimer’s (Dean et al
2017), amyotrophic lateral sclerosis (Foerster et al 2013), Huntington’s (Gatto et al 2015) and Parkinson’s
(Duncan et al 2016) diseases, and are correlated with age-related declining performance on cognitive or
motor tests (Sullivan et al 2010). Beyond Diffusion Tensor Imaging (DTI), significant progress has been
made in diffusion-weighted MRI (dMRI) (Le Bihan and Johansen-Berg 2012), but dMRI metrics alone are
not specific to these WM changes. The interpretation of dMRI signal is often confounded by additional
changes, such as axonal degeneration or inflammatory cell infiltration (Song et al 2005, Sun et al 2006, Wang
et al 2011), or mechanical injury and recovery of axons in traumatic brain injury (Eierud et al 2014).
Therefore, novel adjunctive MRI modalities are sought towards increasing the biological basis and specificity
of brain imaging.

One such promising modality is Magnetic Resonance Elastography (MRE) (Muthupillai et al 1995),
which enables the extraction of local mechanical properties by interpreting the propagation of harmonic
shear waves in tissue created by external excitation at 20–100 Hz (for the human brain). The MRE
methodology involves displacement data acquisition to encode the resulting shear deformation in the tissue,
followed by the computational solution of an inverse problem to extract the local mechanical properties of
the tissue from the displacement field. While highlighting the dramatic progress made during the last
20 years, a recent review of brain MRE (Murphy et al 2019) concludes with a suggestion that there are two
areas that require immediate attention: further improvement of resolution and more investigation into the
biological basis of stiffness (and of MRE metrics, by extension). In order to address these needs systematically,
we propose to revisit the micromechanics of the WM that are relevant to MRE. The justification is based on a
number of arguments. First, we posit that improvements in MRE resolution hinge on better acquisition
strategies in conjunction with inversion of the appropriate model, with the latter intimately connected with a
representative material (mechanical) model embodying an appropriate stress-strain relationship
(constitutive law). Solely improving the accuracy of the inversion algorithm cannot offset any mechanical
model deficiencies; the extracted MRE metrics would depend on the actuation procedure or inversion
method rather than reflecting the underlying physics. Second, we suggest that adopting an accurate
tissue-based model constitutes a rational first step towards the interpretation of MRE metrics (e.g.
viscoelastic moduli) in terms of tissue microarchitecture and intrinsic properties of its constituent cells,
which are intimately connected to both normal or pathological processes. Third, establishing appropriate
tissue-based models allows the systematic integration of MRE with other adjunctive MR modalities, such as
dMRI, in order to improve MRE for neuroimaging.

Both MRE and dMRI metrics reflect voxel-averaged (effective) properties and rely on tissue (sub-voxel)
models to account for the microstructure and intrinsic properties of the components (cell constituents) in
each voxel. The interpretation of dMRI signal is based on multiphase models of water diffusion in the brain
representing the various signal ‘pools’, with a concomitant improvement of the ability of the underlying
tissue models to distinguish between the axon and glial contributions to the signal (Stanisz et al 1997, Sen
and Basser 2005, Assaf and Basser 2005, Hall and Alexander 2009, Panagiotaki et al 2012, Kaden et al 2016,
Kiselev 2017, Jelescu and Budde 2017, Veraart et al 2019). There is a plethora of dMRI metrics, each based on
a different biophysical WMmodel, for example, DTI, DKI (Diffusional Kurtosis Imaging), NODDI (Neurite
Orientation Dispersion and Density Imaging), WMTI (White Matter Track Integrity), etc (Jelescu and
Budde 2017). For definitiveness, we will focus here on DTI metrics that are combinations of the diffusion
tensor eigenvalues, which are the effective diffusion coefficients (averaged over the voxel). In contrast, the
majority of prior brain MRE studies reviewed in (Murphy et al 2019) are based on a priori constitutive
models of the brain, which represent the whole brain as a linear viscoelastic and isotropic material. Unlike
DTI, the isotropic MRE material model returns a single property pair (stiffness or storage modulus, G ′, and
loss modulus, G ′ ′,) that is some composite of direction-dependent shear moduli, and thus is inadequate for
separating contributions to tissue stiffness from axons and glia, or from their interface. WM is known to be
mechanically anisotropic under shear on the millimeter scale, especially in regions with high directional
coherence, such as the corpus callosum and corona radiata (Velardi et al 2006, Feng et al 2013). The need to
choose the correct mechanical problem to invert has become more urgent as both the spatial resolution and
accuracy of in vivo brain MRE has improved, first achieving 2 mm (McGarry et al 2012, 2013, Johnson et al
2013a, 2013b) and then 1.6 mm isotropic voxels (Johnson et al 2014). By separately exciting the brain in two
different directions, the consequences of the mechanical anisotropy of WM on MRE metrics have been
shown to be very important (Anderson et al 2016). Isotropic inversions of the two separate displacement
fields resulted in mechanical property maps that are disparate between the excitations in regions of highly
aligned WM. Specifically, reconstruction of G ′ and G ′ ′ in the corpus callosum, corona radiata, and superior
longitudinal fasciculus revealed property differences between excitations of up to 33%.
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An early attempt to incorporate more tissue microstructure in an isotropic brain model was based on a
2-parameter ‘springpot’ viscoelastic model (Posnansky et al 2012, Guo et al 2012), inspired by a ladder
model of tissue as a fractal network (Schiessel and Blumen 1995). The effective properties lack specificity and
are only an indirect characterization of the microstructure. Prior anisotropic MRE studies have relied on the
assumption that WM tissue is represented by transversely isotropic (Sinkus et al 2005a, Papazoglou et al
2006, Qin et al 2013, Schmidt et al 2016, 2018) or orthotropic (Romano et al 2012, 2014) constitutive laws
parameterized by a few mechanical parameters. Although entirely plausible, these models are not derived
based on the tissue microstructure. Anisotropic models have been utilized to correlate the MRE metrics with
normal brain aging (Kalra et al 2019, Gallo et al 2019) and certain pathologies, e.g. amyotrophic lateral
sclerosis (Romano et al 2014), but their a priori nature does not allow the separation of the effect of the
microstructure from the intrinsic properties of the constituents (axons, myelin, glial cells). As the growing
body of in vivo brain MRE studies demonstrate (Murphy et al 2019), there is a correlation between tissue
stiffness decreases with normal aging or level of dementia, but these changes cannot be assigned to specific
microstructural events. Without this assignment, MRE cannot differentiate between the different pathologies
coexisting in the aging brain, as well as separate the confounding effects of edema, inflammation, or
intracranial pressure variation. Unless the model accommodates changes in neuro-architecture and intrinsic
tissue properties separately, the investigator has to merely rely on correlations between MRE metrics and
putative pathophysiology. More importantly, information from other ex vivo and in vivo studies cannot be
exploited optimally to design the next MRE study. For example, it is not known how the model should be
formulated rationally to account for the reduction in the number of myelinated axons, alterations in fiber
diameter, degenerative changes to the myelin sheath, as well as remyelination associated with normal aging
(Morrison and Hof 1997). It is not known how these structural changes should be used systematically to
interpret prior -or inform future- human MRE studies because the sensitivity of the derived MRE metrics to
these changes is not known.

The integration of MRE and DTI has been already advocated based on progress in breast elastography
(Sinkus et al 2005a, 2005b). Specifically, Sinkus and collaborators have proposed a transversely isotropic
mechanical model for soft fibrous tissue MRE based on local fiber orientation extracted from DTI, which
was validated on simple anisotropic viscoelastic phantoms and bovine muscle samples (Qin et al 2013).
However, the proposed inversion method relies on assuming that mechanical properties vary slowly in space,
which is not justified in the case of brain WM. Recently, the classical dMRI metrics (Jelescu and Budde 2017)
are supplemented by additional dMRI metrics that are more sensitive to WMmicrostructure changes during
healthy aging (Branzoli et al 2016, Guerreri et al 2019). In addition, there are alternate MRI modalities that
can complement MRE by probing specific WMmicrostructural features in vivo (Stikov et al 2015, Björnholm
et al 2017, Berman et al 2018, West et al 2018). These extra modalities provide information about specific
cellular compartments (intracellular diffusion, myelin volume fraction, ratio of myelin to axon size), but
similarly to DTI, both sequence design and signal interpretation depend on assumed microstructure models
and associated spin kinetics.

Rather than starting from an a priori constitutive model, we focus here on developing a WM tissue model
starting from the microstructure. The dual challenge is to capture all the relevant physics that impact the
voxel-averaged MRE signal, while the model remains parsimonious. Using a minimal model to interpret the
measurements ultimately results in a tractable inverse problem. Our approach is to start with a large set of
topological and material parameters that are relevant to the response of the tissue under the MRI protocols,
and then eliminate those parameters that do not significantly affect the measurements. MRE and DTI
measure the effective mechanical and diffusive properties of brain parenchyma, so a systematic approach to
meet the challenge is to model the underlying micromechanics and diffusion physics at scales that are
relevant to the imaging physics. Typical MRE and DTI pulse sequences render the MRI signal sensitive to
proton spin displacements on the micrometer scale; the first encoding coherent (harmonic), while the
second incoherent displacements. On the other hand, both clinical (in vivo) MRE and DTI have a practical
voxel resolution limit of ~ 1 millimeter. All structural information below this spatial scale is ‘smeared’ but
not lost. An established method to recover microstructural information is based on exploiting the
organization of WMmicrostructure and the underlying physics. In analogy with biophysical DTI models
(Fieremans and Lee 2018), a candidate micromechanical model of WM involves a unidirectional composite
with axonal fibers embedded in a glial matrix. This is a canonical topology that corresponds to realistic
cyto-architectures, and which can be related to WMmicrographs extracted through brain sectioning and
microscopy (Lee et al 2019). We propose modeling the physics of both MRE and DTI on the same tissue
model at the microscale. The justification for pursuing an integrated MRE-DTI tissue model is two-fold:
First, DTI provides the local orientation of the axons that allows the proper alignment of the
micromechanical tissue in the WM. Second, it is conceivable that using both DTI and MRE (effective)
metrics, the local intrinsic (phase-specific) properties can be extracted by the established relationship
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between effective and intrinsic properties. There is no coupling between MRE and DTI physics, only
additional information that can be used to estimate the properties of each cellular phase.

At this point, it is important to contrast the constraints of MRE with those of other ex vivomechanical
characterization methods for brain tissue. In vivo brain MRE is based on low frequency (50 Hz), micron-size
displacements and low shear strain (∼ 10−4) harmonic excitation and detection of the shear waves. Ex vivo
methods involve medium to large strains under quasistatic, creep/relaxation, constant strain
tensile/compression, oscillatory shear, indentation, or impulsive actuation of brain tissue (Chatelin et al
2010). The large scatter of data reported in (Chatelin et al 2010) exemplifies the fact that the effective brain
tissue properties depend strongly on the loading conditions, as well as test conditions (Hrapko et al 2008).
Recent shear elastography studies have revealed the significant effect of varying intracranial pressure (Arani
et al 2017, Tzschätzsch et al 2018) and temperature (Liu et al 2017), as well as the resulting tissue alterations
during the excision procedure (Guertler et al 2018, Liu et al 2018). The development of a microstructural
model that can accommodate the effects of different loading and test conditions will allow the incorporation
of ex vivo studies to interpret or validate in vivo brain MRE studies. Inspired by the established body of
knowledge on the mechanics of composites (Christensen 2005), there are a number of micromechanical
studies (Abolfathi et al 2009, Pan et al 2011, Giordano and Kleiven 2014, Yousefsani et al 2018, Recchia et al
2014, Pan et al 2013, Zhao and Pelegri 2014a, 2014b, 2016, Wu et al 2019, Pan et al 2020) that describe
fibrous material structures and soft fibrous tissue response to many of the above loads (including their
combinations) other than the actuation pertinent to brain MRE. A biphasic (glia-axon) fiber-reinforced
composite model was employed by (Arbogast and Margulies 1999) to interpret the harmonic viscoelastic
response of the brain stem. There is no published study (to our knowledge) of micromechanical models of
WM tissue as a triphasic (glia-myelin-axon) composite under harmonic shear. Moreover, there are no
systematic sensitivity analyses of WM effective mechanical properties by varying all intrinsic (phase-specific)
parameters involved.

The present study addresses the following aims:

• Develop an integrated WM tissue model to extract effective metrics for MRE and DTI, based on rational
mechanics and diffusion physics, respectively. Our focus remains on multiphasic biophysical models based
onWMcell-level microstructure contained in a tissue-based representative elemental volume (REV). Given
the lack of prior work with triphasic models, it is reasonable to start with a 2D homogenization model
involving only physics in the plane perpendicular to the axons.

• Perform a sensitivity analysis to determine which intrinsic (microstructural and phasic) parameters are
important to the theoretical REV-averaged effective MRE and DTI metrics, both obtained from steady-
state simulations. These metrics are computed in the same REV (representing a co-registered MRE/DTI
voxel) directly from the underlying physics, rather than for specific MRE or DTI sequences.

• Discuss the limitations of the WM tissue model, reduction of model parameters, potential applications in
interpreting MRE/DTI experiments, and possible extensions of the WMmodel and sensitivity analysis.

The overarching aim of the present study is to establish a systematic framework capable of integrating
MRE and DTI into an analytical -not merely descriptive- method of probing the brain WM in health or
disease.

2. Materials &methods

2.1. White matter tissue biophysical model
Building upon our prior systematic work on axon-glial interaction models built from experiments with
chicken embryos (Pan et al 2011), we focus here on the development of an MRE-relevant model of brain
WM starting with the interactions between single axons and glial cells. We consider the geometry and
mechanical properties of three compartments: axons, glial phase, and myelin. Rather than simply serving as
‘glue’ to the associated axons, glial cells (oligodendrocytes, neurolemmocytes, and astrocytes) maintain
multifunctional and bidirectional interactions with axons throughout life (Saab and Nave 2017). The glial
phase consists of these glial cells and a much softer extracellular matrix (glycosaminoglycans, proteoglycans,
etc) (Ruoslahti 1996). Henceforth, we will use ‘glia’ to refer to the glial phase as a whole. The axon
cytoskeleton contains longitudinally aligned microtubules (nanoscale structures), which are highly
cross-linked in the transverse plane (De Rooij et al 2017), so we can assume that individual axons are
mechanically isotropic in the plane perpendicular to their axis. (Recall that both MRE and DTI are sensitive to
the micrometer length scale, which is comparable to cell size, but imaging resolution is ~ mm.)
Oligodendrocytes can connect as many as 50 segments of different axons through myelin sheaths, but their
spatial organization, as well as that of the other glial cells, is not ordered on the micrometer scale. A
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theoretical study of dynamic shear response of 2D cross-linked random fiber networks revealed that, at the
limit of long wavelengths, the mechanics are controlled by the elastic properties of the constituents and not
by the network connectivity (Babaee et al 2015). Indeed, brain MRE involves shear wavelengths of the order
of cm (Johnson et al 2013a), which is much larger than the distance between individual axons. Consequently
we propose that the glial matrix in 2D can be considered as an isotropic continuum with uniform viscoelastic
moduli. Finally, the myelin sheath around each individual axon exhibits a compact periodic nanostructure,
and we similarly consider it as an isotropic uniform phase. Consequently, the WM is represented by a
unidirectional composite, and each representative elementary volume (REV) contains the cross-section of a
single cylindrical axon with the surrounding myelin annulus, immersed in glial matrix, cf figure 1(b).
Furthermore, the three phases, axon, myelin and glia, are all perfectly bonded. This system is excited by
imposing harmonic shear stress at two opposite boundaries of the REV, in a spatially periodic manner, and at
a single frequency (50 Hz) that is typically used for in vivo brain MRE.

Each phase is assigned isotropic mechanical and diffusional properties, which are piece-wise uniform. An
assessment of the intrinsic properties of the components of this composite reveals that (a) axons restrict water
diffusion (Beaulieu 2009), and (b) stiffness and viscosity increase as glial matrix < composite < myelinated
axon (Lu et al 2006, Abolfathi et al 2009, Shreiber et al 2009). Practical ranges for the viscoelastic properties
were developed based on ex-vivo data. A lower bound of intrinsic properties for the glial cells was derived
from scanning force microscopy data for hippocampal glial cells (Lu et al 2006). Data was interpolated using
a power law relationship as a function of frequency, obtaining G ′

glia = 116 Pa and G ′ ′
glia = 51.1 Pa at 50 Hz.

Reference values for axons were derived from porcine brainstem data obtained by (Arbogast and Margulies
1998, 1999) resulting in G ′

axon = 2190 Pa and G ′ ′
axon = 1793 Pa at 50 Hz. It is worth noting that the

corresponding ‘matrix’ moduli are G ′
glia = 904 Pa and G ′ ′

glia = 372 Pa, but ‘matrix’ in Arbogast and Margulies
refers to gray matter. Such discrepancies are symptomatic of the general paucity of consistent in vivo and ex
vivomeasurements of mechanical properties of human and animal model brains because these properties are
regional, depend on method of measurement (frequency and mechanical actuation mode) and adopted
mechanical model, and vary with age/post-mortem conditions (Miller et al 2000, Miller and Chinzei 2002,
Hrapko et al 2008, Elkin et al 2010, Chatelin et al 2010, Shulyakov et al 2011, Bilston 2011, Zhang et al 2011).
Diffusion coefficients for brain white matter were taken from (Sen and Basser 2005).

Homogenization involves the extraction of the effective mechanical properties by averaging the
stress-strain relationship over the 2D REV. An explicit description of the viscoelastic and diffusion responses
of the tissue in the REV is not feasible as a function of its architecture and the intrinsic material properties of
axon, myelin, and glia phases. Nevertheless, a relationship of the following type can be developed
numerically

[
G ′
eff,G

′ ′
eff,Deff

]
= F1

(
VFmyelin,VFaxon,G

′
p,G

′ ′
p ,Dp

)
. (1)

F1 maps intrinsic properties (subscripted with p) to the effective shear storage modulus G ′
eff and shear

loss modulus G ′ ′
eff of the tissue REV, and the effective diffusion coefficient Deff as a function of geometrical

parameters, such as volume fractions of myelin and axon (VFmyelin,VFaxon, respectively). The subscript p in
the properties appearing in (1) denotes intrinsic (phase-based) values of the viscoelastic moduli in axoplasm
(p= axon), myelin sheath (p=myelin), and glial (p= glia) compartments. The complete list of intrinsic
properties is: G ′

axon,G
′
glia, G

′
myelin, G

′ ′
axon, G

′ ′
glia, G

′ ′
myelin, Daxon, Dglia,Dmyelin. Introducing a dimensionless

parameter gratio to describe the myelin thickness, which is defined as the ratio between axon diameter and
total fiber diameter, cf figure 1(b), the following relationship holds

VFmyelin

VFaxon
=

1− g2ratio
g2ratio

. (2)

In (1), the effective shear storage and shear loss moduli generally depend on the angular frequency ω of
the harmonic loading, since the intrinsic properties are also frequency-dependent. By defining a fiber volume
fraction VF= VFaxon +VFmyelin, (1–2) can be combined as

[G ′
eff (ω) ,G

′ ′
eff (ω) ,Deff] = F2

(
VF,gratio,G

′
p,G

′ ′
p ,Dp

)
. (3)

In the following two sections, we demonstrate how the mapping F2 is computed by developing a
mechanical model separately from the diffusion model for the same REV, and then performing sensitivity
analysis for a set of inputs given in the RHS of (3).
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Figure 1. (a) Schematic of parallel axons. The transverse mechanical properties pertain to shear in the plane 2–3, and the
transverse diffusion coefficients to gradient along the same plane. (b) 2D representative elementary volume (REV) for the
triphasic model for myelinated axons, marking intrinsic properties (∗ denotes complex viscoelastic moduli) and periodic
boundary conditions. The glial phase includes both glial cells and extracellular matrix. The lower right panel depicts Von Mises
stress in pure shear. Diagonal magenta lines represent periodic matrix structures.

2.2. Computational mechanical and diffusionmodels
2.2.1. The mechanical model
The mechanical model is developed by applying a force balance in the triphasic REV considered as a
continuum

∇·σ = ρ
∂2u

∂t2
, (4)
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where ρ is the density, which is the same in all three phases.∇·σ denotes the divergence of the (Cauchy)
stress σ, and u the displacement vector in the REV, both functions of space and time. Given the small strains
exhibited in MRE, a linear, isotropic constitutive relationship is considered in each phase between the stress
and the strain ε as follows

σ =

[
Ep

3
(
1− 2νp

) − 2Gp

3

]
tr(ε) I+ 2Gpε ; ε=

1

2

[
∇u+(∇u)T

]
. (5)

The Young modulus, Ep, shear modulus, Gp, and Poisson ratio, νp, represent the piece-wise uniform
mechanical properties of each phase, denoted by subscript p, tr(ε) is the trace of the strain tensor, and I is the
second-rank identity tensor.

The triphasic 2D tissue model is subjected to MRE loading conditions, which involves harmonic forcing
of the brain at a typical frequency of f= 50 Hz. The time dependent response of biological materials to
impulse or step functions (Lakes 2009) suggests the suitability of linear viscoelasticity theory for this study.
The development of the mechanical model for the white matter involves imposing the value of the average
pure shear strain, γ, in the plane 2–3 of the REV (figure 1(a)), and the estimation of the corresponding shear
stress τ , cf figure 1(b), i.e. σshear = τ = Gpγ. The validity of the above average constitutive equation has been
verified in 3D by imposing a number of forcing scenarios; 3 shearing loads in planes 1–2, 2–3, and 1–3, and 3
tensile loads test in axes 1, 2 and 3. In the following, only the 2–3 plane shear is considered. MRE excitation
involves the input of oscillatory shear strain

γ (t) = γ0e
iωt, (6)

where γ0 is the amplitude of the shear strain, i=
√
−1, and ω = 2πf. The engineering shear strain (6) is

defined as the sum of the shear components in the plane 2–3 of the strain tensor ε given by (5). The strain
experienced at each cycle is γ = 2ε23 = (u+ v)/L where u,v are the displacement boundary conditions on
the loading planes of the REV, and L= L1 = L2 is the distance between these planes, cf figure 1(b). At steady
state, there is a phase lag ϕ between the shear stress, τ (t) , and the shear strain, γ (t)

τ (t) = τ∗eiωt = τ0e
(iωt+φ), (7)

where τ∗ is the complex stress amplitude, τ∗ = τ0eiϕ = τ0 (cosϕ+ isinϕ) , and τ0 is the amplitude of the shear
stress. Considering the dynamic relationship between shear stress and strain (4–5), the complex shear
moduli of the REV can then be expressed via (6) as

τ (t) = G∗
eff (ω)γ (t) = [G ′

eff (ω)+ iG ′ ′
eff (ω)]γ0e

iωt. (8)

The frequency dependent components of G ′
eff and G

′ ′
eff of (8) are the homogenized (over all three

constituent phases in the REV) storage and loss moduli, and can be evaluated using Fourier transforms (FT)

in terms of g̃(ω), which is the complex FT of the shear relaxation function g(t) = GR(t)
G∞

− 1 (Crawford 1998),
as noted below

G ′
eff (ω) = G∞ (1−ωℑ(g̃)) and G ′ ′

eff (ω) = G∞ (ωℜ(g̃)) . (9)

GR (t) and G∞ indicate the time-dependent shear relaxation modulus and the steady state shear modulus,
and ℜ(g̃) ,ℑ(g̃) the real and imaginary parts of the complex g̃(ω), respectively. Equation (9) reveals that
when a harmonic strain is applied to a viscoelastic material at steady state, the material responds with an
in-phase stress of magnitude G ′

effγ0 (representing the elastic behavior), and an 90◦ out-of-phase stress
magnitude of G ′ ′

effγ0 (viscous behavior). The phase lag, ϕ, often called loss angle, can finally be expressed as

ϕ= arctan
(
G ′ ′
eff (ω)/G

′
eff (ω)

)
. (10)

2.2.2. The diffusion model
The diffusion model is developed here by considering steady-state spin diffusion in the same REV
continuum, as defined by (Sen and Basser 2005)

0=∇·
(
Dp∇C

)
, (11)

where Dp denotes the diffusion coefficient of spins in phase p, and∇C is the gradient of the spin
concentration. The effective diffusion coefficient (averaged over the REV) is defined by the following
equation

Deff∇C= Dp∇C. (12)
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The overbar denotes volume averages over the REV, and Dp∇C is the diffusive spin flux generated from a
gradient∇C along a prescribed direction in a hypothetical diffusion experiment. Here only the transverse
diffusion coefficients are considered. Unlike MRE, rather than mimicking the DTI experiment for the
definition of effective diffusion coefficient, we adopt the standard definition (12), which is independent of
the DTI sequence employed.

2.3. Solutionmethodology of forward problems
In section 2.2, we have presented the systematic definition of the effective shear moduli G ′

eff and G
′ ′
eff, and

effective diffusion coefficient Deff, which are based on solving the partial differential equations (4) and (11)
(the forward problems). The equations are integrated in 2D and in the REV shown in figure 1(b) containing
a triphasic composite, and are supplemented with appropriate periodic boundary conditions on the REV.
The inter-phase conditions are continuity of displacement u and concentration C.

By employing the commercial finite element code ABAQUS, a finite element method was used to
integrate the mechanical model and determine the effective viscoelastic properties of an REV of a composite
material according to equations (1)–(10), while imposing continuity of displacement u at the inter-phase
boundaries (phases perfectly joined). This approach has been used extensively for conventional composites
(Pan et al 2011), and includes both energy and boundary loading methods (Iorga et al 2008, Pan et al
2008b, a). The axon diameter was fixed at 0.7 µm and the outer bounds of the mechanical model varied
depending on the designated volume fraction and gratio. The domain was meshed with a varying element size
of approximately 0.07 µm. The REV was meshed with 8-node biquadratic, reduced integration, hybrid
elements and mesh convergence tests were performed, which required ~2000 finite elements. A direct
steady-state dynamic solver is used to give the response of the REV under a steady harmonic load of 50 Hz.
The load was applied as a displacement boundary condition on the surface nodes, with a harmonic
displacement parallel to the face, resulting in a pure shear distortion of the REV, with a shear strain of
γ = 0.01. The faces in the shear plane were assigned a repeated boundary condition, where each node’s
displacement was matched to a corresponding node on the opposing face, cf figure 1(b). After the steady
state harmonic field was computed, the reaction forces necessary to produce the assigned displacements were
measured and summed for each face, and the resulting average complex shear stress was found. The effective
shear modulus of the REV model was computed based on the pure shear stress loading value and correlated
average complex shear strain.

The diffusion model given by equations (11) and (12) was integrated using the analytical solution
proposed by (Sen and Basser 2005) for cylindrical axons arranged in a periodic square array. The effective
transverse diffusion coefficient given by truncation to 3rd order was used in the present study. The diffusion
model is parameterized by cell diameter, gratio, volume fraction, and diffusion coefficients for the axons,
myelin sheath and surrounding glial matrix. Because our results consider only the transverse diffusion
coefficient and not the total diffusion tensor trace, the cell diameter does not affect the solution, so it is
ignored. Compartmental water concentrations are held constant at Cmyelin = 0.50, Caxon = 0.88, and Cglia

= 0.95 (Sen and Basser 2005). Transverse diffusion coefficients can be normalized by the glial diffusion
coefficient (see equation (12) of Sen and Basser 2005) to provide a non-dimensional relationship between
the three diffusion coefficients.

3. Results

Since the analytical solution for the diffusion problem is available in the literature, we comment below only
on the validation of the methodology for solving the mechanical problem via ABAQUS. A custom code was
written to generate the finite element grid of the REV and to analyze the simulation results, so as to enhance
the flexibility of the method for future applications involving more complicated models. The consistency of
the numerical solution method was tested by assigning the same value to the viscoelastic properties of all
three phases, and then verifying that the resulting effective properties match this value. Next, the numerical
solution was compared with analytical expressions, which approximate the effective stiffness properties of
unidirectional composites under static loading. These expressions are derived from embedding a single
composite cylinder in an equivalent homogeneous medium, resulting in a transversely isotropic material
(Christensen 2005). Our results are consistent with the effective transverse shear modulus predictions in
Christensen 2005.

3.1. Sensitivity analysis of mechanical model
The purpose of the sensitivity analysis is to study systematically the effect that various intrinsic properties
have on the effective properties defined on the REV as per (3). We define here a total of eight variables, which
are derived from a combination of the intrinsic material parameters: gratio, VF, G ′

axon, G
′ ′
axon/G

′
axon, G

′
myelin,
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Table 1. Intrinsic mechanical properties and default values of variables. These default ratios and storage moduli correspond to G ′ ′
axon =

1804 Pa, G ′ ′
myelin = 2870 Pa, and G ′ ′

glia = 410 Pa.

Intrinsic material properties Variables Default value

Ratio of axon radius to the overall radius of the axon plus myelin sheath thickness gratio 0.65
Fiber Volume Fraction VF=VFaxon +VFmyelin 0.5
Storage modulus of axon G ′

axon 2200 Pa
Ratio of the loss modulus to the storage modulus of axon G ′ ′

axon/G
′
axon 0.82

Storage modulus of myelin G ′
myelin 3500 Pa

Ratio of the loss modulus to the storage modulus of myelin G ′ ′
myelin/G

′
myelin 0.82

Storage modulus of glia G ′
glia 500 Pa

Ratio of the loss modulus to the storage modulus of glia G ′ ′
glia/G

′
glia 0.82

Axon Diameter –2rin 0.70 µm

G ′ ′
myelin/G

′
myelin, G

′
glia, and G

′ ′
glia/G

′
glia. These eight variables and their ‘default’ values can be found in table 1. A

decision was made to use the ratios between the storage and loss moduli to define the loss modulus so as to
retain the ability to change the elastic modulus of the component material while maintaining a similar
viscoelastic behavior. Due to uncertainty in available experimental data, a wide range of the given material
properties was used. Based on the literature survey discussed in section 2.1, we consider each phase of the
WM as a material with dominant elasticity, i.e. the storage modulus for each phase is higher than its loss
modulus. To determine the influence of each independent variable on the resulting effective moduli, several
datasets were obtained wherein a single variable was varied while all other variables were held constant. In all
mechanical computations, we set the Poisson ratio close to 0.5 (νp = 0.4995) to account for the near
incompressibility of WM, fix the axon diameter equal to 0.7µm, and vary the fiber volume fraction (VF) by
varying the overall REV size.

First, we study the influence of each independent variable on the resulting effective moduli Several results
are plotted in figures 2(a)–(h), where a single variable is altered while keeping all other variables constant.
The effective phase angle ϕ is an additional variable. Figure 2(a) indicates that the effective storage and loss
moduli gradually decrease as the gratio increases. This is because the storage and loss moduli of the myelin are
higher than those of the axon, and as implied by equation (4), the ratio VFmyelin/VFaxon decreases with
increasing gratio. Therefore, as the volume fraction of myelin decreases relative to that of the axon, the
effective storage and loss moduli decrease, which means that the homogenized REV tissue appears softer.

Figure 2(b) indicates that the effective storage and loss moduli increase, as the sum
VFmyelin +VFaxon = VF increases. Since axon and myelin have higher storage and loss moduli than the glia
matrix, higher volume fractions of axon and myelin result in higher effective moduli. Figure 2(c) shows the
effect of the G ′

axon on the effective moduli while keeping constant VF= 0.5 and gratio = 0.65. The first value
represents a low volume fraction of the sum of the stiffer phases of axon and myelin, which corresponds to a
comparatively large VFglia resulting in low sensitivity of the effective moduli with G ′

axon. Starting with higher
sensitivity to the effective moduli at the lower range of G ′

axon (<3000 Pa), the sensitivity diminishes at higher
values of G ′

axon. Similar behavior is observed for G ′
myelin, cf figure 2(e), where the trend is similar to figure 2(c).

However, the slope of the G ′
eff vs G

′
myelin curve is higher than that for the G

′
eff vs G

′
axon curve, indicating a higher

sensitivity of the effective moduli with myelin stiffness. From figures 2(b) and (c) we can deduce that, as the
volume fraction of the stiffer phases (axon and myelin) increases, the sensitivity of the effective modulus with
respect to G ′

axon also increases, especially for VF> 0.5 where the effective moduli curves is noticeably steeper,
see figure 2(b). Regarding the trends of the effective storage and loss moduli with increasing glia stiffness,
there are some differences between the results of figure 2(g) and those of figures 2(c) and (e). On one hand,
the effective storage and loss moduli should be more sensitive to the intrinsic properties of glia than those for
axon or myelin, given the higher glial volume fraction. On the other hand, the glia storage and loss moduli
are lower than the intrinsic properties of axon or myelin. As shown in figures 2(c), (e) and (g), the ranges of
G ′
glia, G

′
axon and G

′
myelin material properties are disparate: 0–3000 Pa for G ′

glia and 500–6500 Pa for G
′
axon and

G ′
myelin. The sharp increase of the effective moduli at low values of G ′

glia in figure 2(g) indicates the sensitivity
of the system to glia properties. At higher G ′

glia values, the function of G ′
eff and G

′ ′
eff vs G

′
glia mimics their

variation vs G ′
axon (figure 2(c)), and vs G

′
myelin (figure 2(e)). Taken together, the above observations indicate

that the stiffness of the glial phase is a key influencing parameter to the response of the effective moduli.
The results of figure 2(d) are based on G ′

axon = 2,200Pa, and indicate that the ratio G ′ ′
axon/G

′
axon affects the

effective loss and storage moduli differently. The effective loss modulus increases linearly with G ′ ′
axon/G

′
axon.

This is consistent with keeping G ′
axon fixed and assuming a linear viscoelastic constitutive model for the

tissue. The effective storage modulus decreases and then asymptotes, which implies that increasing G ′ ′
axon

results in the increase of the effective storage modulus. Similar conclusions can be reached for the effects of
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Figure 2. Relationship between the effective moduli and phase angle ϕ, and eight micromechanical variables. The eight variables
are gratio, VFmyelin +VFaxon, G ′

axon, G
′ ′
axon/G

′
axon, G

′
myelin, G

′ ′
myelin/G

′
myelin, G

′
glial, and G

′ ′
glial/G

′
glial, shown separately in subplots (a-h).

In each plot, one parameter is varied over the prescribed range of values shown in the abscissa, while the others assume the default
values given in table 1.

G ′ ′
myelin and G

′ ′
glia, as demonstrated in figures 2(f) and (h). This effect can be shown more clearly by referring

to the curves of the phase angle of effective moduli in figures 2(d), (f) and (h). A comparison of these curves
indicates that the largest impact arises from the glia loss modulus. However, this might be a result of the fact
that the glia volume fraction is higher than VFmyelin or VFaxon.

By inspecting figures 2(a), (b), (c), (e) and (g), the (effective) phase angle ϕ appears relatively insensitive
to gratio, VF,G ′

axon,G
′
myelin,andG

′
glia. On the other hand, the effective loss and storage moduli seem to be very

sensitive to the volume fraction VF, G ′
glia, and G

′ ′
glia. This is because the glia phase occupies more space than

the axon and myelin in the default volume fraction setting (VF= 0.5). However, attention should be paid to
the effect of the intrinsic properties of axon and myelin. As these moduli increase, their relative contribution
to the effective moduli is expected to increase. After setting a constant G ′

glia = 500Pa, and VF= 0.5, the
effective moduli are rescaled by dividing with G ′

glia = 500Pa, and plotted in figure 3 as a function of the
intrinsic properties, which are rescaled similarly. The asymptotic convergence of the rescaled intrinsic
properties of axon and myelin as their values increase is a manifestation of the fact that the contribution of
the glial properties remains dominant for this range. An explanation for this phenomenon can be traced in
the way that morphology of the triphasic composite (shown in figure 1(b)) affects the transmission of shear
stress across the phases. In 2D, the glia phase is contiguous, while both axon and myelin are non-contiguous.
Therefore, it is reasonable to argue that the contiguous glia phase controls the overall transmission of stress.

A more systematic sensitivity analysis involves the generation of a large number of quasi-random
combinations (samples) of the phase properties, which are input to the ABAQUS simulation package,
followed by statistical analysis of the computed effective properties. Six independent variables were
considered: the intrinsic storage (G ′

p) and loss (G
′ ′
p ) moduli of each of the three phases (p= glia, p=myelin,

p= axon). Using the Sobol sequence (Sobol 2001) to provide uniform coverage of the parameter space while
maintaining repeatability, 2500 samples of these variables were generated. In order to only generate samples
that relevant to WM tissue properties, certain constraints were imposed. To ensure that the loss modulus is
smaller than the corresponding storage modulus for each phase, the intrinsic loss modulus was actually
defined by multiplying the storage modulus with a factor between 0.05 and 1. In addition, the glia storage
modulus was defined to be categorically smaller than both the axon and myelin storage modulus. By
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Figure 3. Effective viscoelastic moduli as a function of the intrinsic properties of axon and myelin. All moduli are scaled by
dividing with G ′

glia = 500Pa. The subscript p here takes two values: p= axon or p=myelin.

Table 2.Multiple linear regression analysis of effective storage modulus (VF= 0.26). R2 = 0.994.

Coefficient Standard Error t P > |t| [0.025 0.975]

Constant −0.0030 0.013 −0.235 0.814 −0.028 0.022
G ′
axon 0.0489 0.002 25.251 0.0 0.045 0.053

G ′
myelin 0.0569 0.002 29.900 0.0 0.053 0.061

G ′
glia 0.9470 0.002 538.633 0.0 0.944 0.950

Table 3.Multiple linear regression analysis of effective storage modulus (VF= 0.74). R2 = 0.955.

Coefficient Standard Error t P > |t| [0.025 0.975]

Constant −0.0916 0.031 −2.998 0.003 −0.151 −0.032
G ′
axon 0.2054 0.005 44.746 0.0 0.196 0.214

G ′
myelin 0.3110 0.005 68.886 0.0 0.302 0.320

G ′
glia 0.5913 0.004 141.856 0.0 0.583 0.599

performing ABAQUS simulations for two fiber volume fractions, VF= 0.26 and VF= 0.74, and for axon
diameter at 0.7 µm and gratio = 0.65, two datasets were then generated, each consisting of 2500 effective
moduli. Multiple linear regression analysis using least squares was performed for all independent variables
(G ′

p and G
′ ′
p ) on the two datasets. For the regression of G ′

eff and based on p-values smaller than 0.05, we
conclude that only the storage moduli (G ′

p) coefficients are non-zero. Therefore, we repeated the regression
analysis of G ′

eff with only G
′
p as regressors, and the results are shown in tables 2 and 3 for the two fiber volume

fractions.
In the case of the low VF= 0.26 (table 2), the regression results show a significantly higher t-value for the

glial storage modulus, indicating a higher sensitivity of the effective properties to glia stiffness. In contrast,
although the case of the high VF = 0.74 exhibits regression results with higher t-value for the glial storage
modulus, the t-values of the glia and the myelin are significantly higher (doubled) than those in the low
volume fraction VF = 0.26, cf Table 3. Furthermore, the slopes of the component constituents for all axon,
myelin, and glial are larger in the 0.74 case than their counterparts in the 0.26 case. While the R2 values for
both fits are quite high, there are some significant outliers, as well as some nonlinearity that cannot be
accounted by linear regression analysis. The above analysis highlights the following behaviors: (1) increasing
VF increases the system sensitivity to all three phases, and (2) although the effective properties are sensitive
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Figure 4. Component and component plus residual graphs for the low fiber volume fraction case (0.26). The tighter clustering of
the glial residuals indicates a relatively high sensitivity of effective storage modulus on the glia stiffness. Note the scatter on the
axon and myelin, and while the glial residuals are relatively tightly clustered, they display some degree of nonlinearity.

to glia properties for both VF values, this sensitivity decreases as VF increases from 0.26 to 0.74. This is
demonstrated in the component and component plus residual graphs shown in figure 4 for low VF, and
figure 5 for high VF. Note that the glia residuals are relatively tightly clustered around the mean, but there is
quite a scatter for the axon and myelin results. Nevertheless, the graphs in figure 5 depict a smaller scatter
with larger slopes illustrating the effect of VF in our system. The above observations imply that the mapping
F2 in equation (3) is represented by a nonlinear function with respect to VF, and suggest that the influence
of the glial phase is stronger than that of the axon and the myelin, especially in low VF. The above statistical
analysis confirms the earlier conclusions made in reference to figures 2 and 3, that the glial phase is the
determining factor of the mechanical response of the WM as a composite. This deviates from the response of
traditional composites where at high VFs the reinforcing phase (here axons) dominates the mechanical
behavior. Unlike synthetic (structural) composites, the elastic moduli of the constituents of the brain WM do
not exhibit order(s) of magnitude differences. This enhances the effect of the glial response for all volume
fractions.

Finally, we observe in figures 4 and 5 an increasing range of residuals with increasing values of the
intrinsic moduli for all three phases (axon, myelin, and glia). This increase is a manifestation of the
categorical inequalities established between the intrinsic moduli (section 3.1) to represent the observed
relationship between the biological properties. As the modulus represented in the abscissa increases in value,
so does the range of the other two moduli. This increase in range yields wider range and higher values in the
effective modulus, because the latter increases monotonically with the moduli.

3.2. Sensitivity analysis of diffusionmodel
The parameter ranges chosen for the diffusion model (table 4) match the mechanical model where possible,
and also match literature values. A global sensitivity analysis (Saltelli 2002, Saltelli et al 2010) of the model
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Figure 5. Component and component plus residual graphs for the high axonal volume fraction case (0.74). The tighter clustering
of the glial residuals indicates a relatively high sensitivity of effective storage modulus on the glia stiffness. Note the scatter on the
axon and myelin, and while the glial residuals are relatively tightly clustered, they display some degree of nonlinearity.

Table 4. Parameter ranges for diffusion problem parameters.

Parameter Range Default Value

Axon Diameter 0.40–2.00 0.70 µm
gratio 0.40–0.90 0.65
VFmyelin +VFaxon 0.25–0.75 0.50
Daxon 0.50–3.00 1.50 µm2/ms
Dmyelin 0.01–0.10 0.05 µm2/ms
Dglia 0.50–3.00 1.50 µm2/ms

was preformed using the open source SaLib package in Python (Herman and Usher 2017), which calculates
the variance in the output associated with each parameter or combination of parameters. Parameters were
sampled with a Sobol sequence (Sobol 2001) with 50 000 samples generated for each parameter, for a total of
700 000 samples. Results are shown in table 5. Volume fraction (VF) and glia diffusion coefficient (Dglia)
account for almost all the variance in the transverse effective diffusion coefficient. This is illustrated in figure 6
where one parameter at a time is varied while all other parameters are held constant. Results are displayed in
terms of the effective transverse diffusion coefficient normalized by the glial diffusion coefficient (Deff/Dglia)
to illustrate that the important relationships in the diffusion model are not the absolute values of the
diffusion coefficients but rather the ratios between them. The high sensitivity to changes in volume fraction
can be seen in figure 6(a). In fact, the relationship between Deff and volume fraction is quasi-linear and this
can be attributed to the barrier action of the myelin sheath. Since the diffusion coefficient of myelin is much
lower than that of axon and glia (cf table 4), these two compartments do not exchange many spins during
diffusion, so the effective transport coefficient can be approximated by the ‘law of mixtures’. The significance
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Table 5. Sensitivity indices for diffusion model. Volume fraction (VF= VFmyelin +VFaxon) and glial diffusion (Dglia) account for 98% of
variance in the model.

Parameter 1st Order Indices± Confidence Intervals Total Order Indices± Confidence Intervals

gratio 0.002± 0.001 0.005± 0.000
VF 0.400± 0.008 0.479± 0.007
Daxon < 0.001± 0.000 < 0.001± 0.000
Dmyelin 0.010± 0.001 0.012± 0.000
Dglia 0.507± 0.007 0.586± 0.008

non-zero 2nd Order Indices± Confidence Intervals

VF & Dglia 0.078± 0.014
gratio & Dmyelin 0.001± 0.001

Figure 6. Effective transverse diffusion coefficient/glial diffusion coefficient for changes in (a) gratio and axon+myelin volume
fraction, (b) axonal diffusion/glial diffusion coefficients, (c) myelin diffusion/glial diffusion coefficients, and (d) glial diffusion
coefficients.

of glial diffusion coefficient is shown in figure 6(d). While it may appear that the glial phase does not have as
large of an effect as the volume fraction, it is important to remember that all ordinate values are normalized
by the glial diffusion coefficient, so the effective diffusion coefficient is, in fact, varying substantially with
changes in the glial diffusion coefficient.
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4. Discussion

4.1. Choice of triphasic tissue model in REV
Brain WMmicrostructure revealed through microscopy is indeed very complex (Lee et al 2019) so we opted
for a canonical REV model to characterize the WM tissue architecture directly. Choosing a simple axonal
shape (perfect cylinder) and periodic packing arrangement (square array), simplifying the myelin sheath as a
cylindrical annulus, as well as prescribing uniform properties in each phase, is driven by the need to develop
an REV that can be related to histology but also described with as few parameters as possible. The first
enables the solution of the forward problem for in silicoMRE and DTI experiments. The second leads to the
formulation of tractable inverse problems, i.e. extraction of cell level parameters from the MRE and DTI
signal. For DTI, such continuum tissue models allow the interpretation of the signal in terms of biophysical
parameters that can be assessed via independent histological assays (Jelescu and Budde 2017, Lee et al 2019).
However, there is a paucity of systematic computational investigations of the viscoelastic response of such
multiphasic systems. The biphasic model in (Arbogast and Margulies 1999) employed approximate
expressions for the complex transverse moduli. To our knowledge, the triphasic model presented here is used
for the first time to model MRE-relevant harmonic shear stress on the cell level.

Although the assumptions regarding cylinder packing arrangement as well as shear loading direction
appear to limit the applicability of the results, these limits are not severe. Prior results for two-phase
unidirectional composites (identical parallel cylinders embedded in a homogenous matrix) indicate that the
packing arrangement (square vs. hexagonal arrays) does not affect significantly the effective stiffness (Huang
et al 2008), and the effective diffusivity (Perrins et al 1979), for fiber volume fractions of up to 0.6. Similarly,
the departure from transverse isotropy is insignificant for effective stiffness (Sertse et al 2018), while it is zero
for effective diffusivity (Rayleigh 1892), which implies that varying the orientation of the transverse
mechanical excitation and diffusion gradient does not affect our results. The last point implies that, as a
result of the homogenization over the 2D REV, MRE/DTI models are isotropic with effective properties G ′

eff,
G ′ ′
eff and Deff transverse to WM axons. Since the MRE/DTI metrics along the WM axons are different from the

transverse, we conclude that MRE/DTI in 3D should be described by transversely isotropic models. Starting
with viscoelastic constitutive models for each phase, of course, results in a viscoelastic effective model for the
homogenized medium. Finally, there is strong experimental evidence that the brain behaves as a viscoelastic
rather than a poroelastic medium at 50 Hz (McGarry et al 2015).

Our results presented in sections 3.1 and 3.2 indicate that there exist analogies between effective shear
and diffusional properties of the homogenized medium, for example with respect to their sensitivity to the
glial phase properties. Nevertheless, there is an important difference in terms of the dependence of effective
properties with fiber volume fraction (VF). The dependence of effective viscoelastic moduli (G ′

eff, G
′ ′
eff) is a

nonlinear function of VF (cf figure 2(b)), while Deff is an approximately linear function of VF (cf figure 6(a)),
both for fixed glial properties. The extraction of each effective property involves integration of the governing
equation over the REV, but viscoelastic properties constitute a fourth order (elasticity) tensor, while diffusion
coefficients form a second order tensor (with eigenvalues given by DTI). The present work indicates that the
mechanical problem solution (MRE signal) cannot be approximated by a spatially-weighted superposition of
the intrinsic phase contributions, in the same way that the DTI signal is considered as a linear superposition
of the various diffusion compartments (Panagiotaki et al 2012).

4.2. Importance of model parameters and their combination
The present sensitivity analysis revealed that the effective loss and storage moduli are very sensitive to the
fiber volume fraction and the intrinsic loss and storage moduli of the glial phase. On the other hand, the
effective phase angle ϕ is insensitive to all parameters other than the ratios G ′ ′

axon/G
′
axon, G

′ ′
myelin/G

′
myelin, and

G ′ ′
glia/G

′
glia. Another parameter of interest to brain MRE researchers (Murphy et al 2019) is the damping ratio

ξ = 1
2 tanϕ= 1

2G
′ ′
eff (ω)/G

′
eff (ω), which along with the phase angle (10), quantifies the importance of viscous

energy dissipated relative to elastic energy stored in the tissue during the shear wave propagation. The above
relationship indicates that ξ would be more sensitive than ϕ, as a matter of definition.

Further insight into the sensitivity of the MRE metrics can be obtained by exploiting the
non-dimensionalization introduced earlier, whereby all moduli were scaled by dividing with a single intrinsic
modulus (G ′

glia). Since all intrinsic moduli are comparable in magnitude, we can scale them with the same

modulus G ′
p ∼ G ′ ′

p ∼ G ′
glia ∼ (10)3Pa, and all length scales with the axon diameter 2rin ∼ (10)−6m. The

steady state version of equation (4) yields the following force balance

∑ G ′
glia

(2rin)
2 ||u|| ∼ ρω2||u|| ⇒

∑ (10)3

(10)−12 ||u|| ∼ (10)3(300)2||u||. (13)
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The Σ operator on the LHS refers to the sum of all the shear stress terms. The above balance implies that the
RHS, and therefore the inertia force, is negligible relative to the shear stress in the REV for f= 50 Hz. The
frequency of harmonic excitation enters in the problem only to the extent that the intrinsic properties of the
individual phases depend on frequency (Arbogast and Margulies 1999, Lu et al 2006). Based on all the
previous discussion regarding similarity laws, the relationship between MRE/DTI metrics and
microstructural parameters expressed by the mapping F2 in (3) can be finally transformed into the following
mapping containing only dimensionless parameters[

G ′
eff

G ′
glia

,
G ′ ′
eff

G ′
glia

,
Deff

Dglia

]
= F3

(
VF,gratio,

G ′
axon

G ′
glia

,
G ′ ′
axon

G ′
glia

,
G ′
myelin

G ′
glia

,
G ′ ′
myelin

G ′
glia

,
Daxon

Dglia
,
Dmyelin

Dglia

)
, (14)

where the frequency dependence of the micromechanical parameters has been suppressed.
Finally, microscopic length scales, such as axon diameter (2rin), do not enter in either the steady-state 2D

mechanical or the diffusion problem. In our tissue model (3), the effective properties in the transverse plane
are only functions of dimensionless geometrical parameters like VF and gratio. Although this conclusion
applies directly to MRE, the relationship to DTI metrics is not straightforward because the dMRI signal
depends on the specific dMRI sequence employed. Histological analysis indicates that less than 1% of the
corpus callosum fibers have diameters larger than 3µm (Innocenti et al 2015). Because the axon diameter is
small relative to the spin diffusion radius, the predicted effective radial diffusivity (RD) in WM obtained with
realistic clinical dMRI sequences (Sen and Basser Baxter and Frank 2013) is not far from the analytical
solution (2005) employed here. This is consistent with the observation that, even with the 300 mT m−1

Connectome diffusion gradient, the correlation of RD to axon diameter in the corpus callosum remains
insignificant (Fan et al 2019). We should note in passing that for this high diffusion gradient level, and
regardless of the gradient waveform, the theoretical dMRI resolution limit of cylindrical fiber diameter is
2− 5µm, depending on SNR and fiber orientation dispersion (Nilsson et al 2017). Two additional comments
are in order regarding the effect of fiber diameter on DTI. First, steady-state DTI metrics do depend on fiber
diameter in 3D (Sen and Basser 2005). Second, DTI metrics obtained with finite diffusion time in WM (Lee
et al 2018) and skeletal muscle (Naughton and Georgiadis 2019a) depend on the fiber diameter. Both these
effects can be addressed by extending the present model to 3D and then simulating the DTI signal, as in
(Naughton and Georgiadis 2019b).

4.3. Comparisons withMRE and DTI data of brainWM
Rather than further discussing the biophysical (biomechanics and diffusion) aspects of the problem, this
section focuses on the import that the presented sensitivity analysis can have on neuroimaging via MRE and
DTI. Firstly, no specific MRI sequences or image formation were considered. Secondly, only comparisons
with ideal experiments can be made. MRE involves the imposition of oscillatory shear strain followed by the
extraction of the effective mechanical properties via the solution of an inverse problem for interpreting the
dynamic stress-strain relationship. The proposed model and reported sensitivity analysis results connect the
results (effective viscoelastic moduli) of the perfect solution of the (anisotropic) inverse problem with white
matter microarchitecture and intrinsic properties of the constituents. Similarly, the results of the diffusion
study can only be related to DTI studies with short pulse width and long diffusion time limit, where the
analytical result of (Sen and Basser 2005) applies (Baxter and Frank 2013). Additionally, our simulations
reported here pertain to effective properties in the plane perpendicular to the fiber (plane 2–3 in figure 1(a)),
such as the transverse shear moduli and radial diffusion coefficients (RD), although extension to a full 3D
study is underway, as discussed in section 4.5 below.

In terms of direct comparisons of the results presented in the previous section with prior data, there exist
limited anisotropic MRE and co-registered DTI measurements of brain WM regions. The reason for this
paucity is the difficulty of solving the anisotropic inverse problem. (Romano et al 2012) introduced an
anisotropic inversion method that relies on spatial-spectral filtering of the displacement fields in the
corticospinal tracts, and by estimating the storage components of the stiffness tensor, supported the validity
of transversely isotropic model for this region in healthy subjects. A follow-up study (Romano et al 2014)
concluded that, in terms of effective transverse properties, the shear storage modulus (G ′

eff) decreases and
RD=Deff increases significantly in the corticospinal tract of amyotrophic lateral sclerosis (ALS) patients. No
loss modulus data were reported. Since ALS is associated with axonal degeneration and consequently
decreasing axonal volume fraction (VF), the above measurements are consistent with the trends depicted in
figures 2(b) and 6(b), if we assume no other parameters change. Two recent anisotropic MRE studies
reported that normal aging is associated with the following trends of the effective transverse moduli in the
human corpus callosum: G ′

eff decreases (Kalra et al 2019), and both G
′
eff, G

′ ′
eff decrease with age (Gallo et al

2019). Normal aging is correlated with WM demyelination but with stable gratio (Berman et al 2018), hence
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both trends contribute to decreasing VFmyelin and VFaxon according to (2). Both results (Romano et al 2014,
Gallo et al 2019) are thus consistent with the trends depicted in figure 2(b). On the other hand, decreasing
VFmyelin +VFaxon while gratio is fixed, results in increasing Deff (according to figure 6(b)). This is consistent
with the findings of (Hasan et al 2009, Bartzokis et al 2012) regarding age-related changes in radial diffusivity
in the late-myelinating region of human corpus callosum, which is composed primarily of small diameter
axons.

Incomplete comparisons can be made with an earlier, high resolution study of in-vivo brain MRE, albeit
one employing an isotropic inversion model (Johnson et al 2013a). Two MRE metrics showed high
correlation with one DTI metric in the corpus callosum: G ′

eff exhibited positive correlation with RD, and G ′ ′
eff

negative correlation with RD. Given thatgratio varies slowly along the corpus callosum (Berman et al 2018),
the first trend can be explained by our results in figures 2(b) and 6(b) since VFmyelin +VFaxon varies strongly
along the corpus callosum (Björnholm et al 2017). The caveat here is that the two measured MRE metrics do
not represent only the transverse moduli, but are composite measures of longitudinal and transverse
mechanical properties. In addition, there is no evidence that all intrinsic properties (G ′

p,G
′ ′
p ,Dp) remain

constant along the corpus callosum. We have recently developed an inverse transversely isotropic scheme to
extract effective shear viscoelastic properties from multi-excitation MRE, and we employed the extra
information provided by the anisotropy of the WM effective properties to estimate the intrinsic properties of
axons and glial matrix from a biphasic WMmodel (Gallo et al 2020). Information about the local axon
orientation was provided by co-registered DTI data. We confirmed that axons are indeed stiffer than the
surrounding glial phase, which is consistent with experiments, and found that intrinsic axonal viscoelastic
properties vary along the corpus callosummuch more widely than that of glia. Although this was based on a
biphasic model, this result bolsters our confidence in the integrated MRE-DTI tissue model reported here
and motivates future extensions in 3D.

4.4. Limitations of sensitivity indices
In addition to the limitations mentioned above, there are methodological limitations inherent to the
sensitivity analysis we employed. Sensitivity indices are only meaningful if the parameter ranges are realistic.
These sensitivity indices are global indices and describe the effect over the prescribed range as a whole. The
parameter ranges chosen are intentionally broad to include the majority of values reported in the literature.
Additional measurements will allow refining these parameter ranges leading to more accurate sensitivity
indices. Another limitation of the present DTI study using the periodic unidirectional composite model is
that we did not address the effects of WM fiber diameter heterogeneity and orientation dispersion (Veraart
et al Alexander et al 2010, 2019, Lee et al 2019), variation of gratio inside the REV (Lee et al 2019), or variable
diffusion time (Lee et al 2018). Similarly, we have not addressed the effect of variation of the intrinsic
mechanical or diffusional properties inside the REV. Finally, we have not assessed the effect of experimental
error on the sensitivity relationships in order to determine a minimum SNR level that will allow the correct
interpretation of MRE and DTI signals in terms of WMmicroarchitecture, as was recently demonstrated for
skeletal muscle dMRI (Naughton and Georgiadis 2019b). This would require synthesizing the signal from
specific MRI sequences for WM as well as describing the solution of the associated inverse problems, which
are both outside the scope of this investigation.

4.5. Future and possible extensions
Even in a relatively coherent WM structure, like the corpus callosum, there is significant along-axon diameter
variation and fiber orientation dispersion (Lee et al 2019), so the 2D model needs to be extended. The
natural extension of the present methodology is to accommodate 3D brain WMmicrostructure based on
microscopic tissue images. As a next step, 3D REVs will be developed and the homogenization procedures
applied here will expand to 3D domains. An assembly of micro-scale 3D REVs will be merged together to
construct an integrated macro-scale brain white matter (BWM) finite element model. We will employ
assemblies of the homogenized REVs (carriers of material properties and geometric information) to form the
elements of the BWMmodel based on typical fiber volume fractions calculated by the relative distance
between the elements and axonal traces. Additional geometric information will be considered in the process
of combining the lower level REV model with the higher level model such as the different tortuosity of the
axon trace and different volume fractions of the axon. Both of these geometric and material parameters are
expected to affect the material properties and thus the response of the brain tissue. More complex,
orthotropic or anisotropic material properties will be considered as necessitated by the 3D tissue structure.
Each element of the BWM finite element model will be assigned material properties that reflect the
information of axon’s location and VFs around the axons. The orientation of each BWM element will be
based on the information of the orientation of its axonal traces. The above actions will result in a BWM finite
element model with both fully defined material properties and material orientation that transcends scales
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and will enable the investigation of the dynamic response of brain WM at large scales and under MRE
scenarios, while preserving their micromechanical quintessence. Analogous methods will be applied to
simulate the DTI signal for brain WM, as was demonstrated in skeletal muscle dMRI (Naughton et al 2020).

The presented work is the first step towards developing a realistic 3D simulation framework for
performing MRE-DTI in silico experiments in complex, histology-based BWM domains (the forward
problem). The benefits of this endeavor are multifold. First, this will further inform the selection of the
appropriate constitutive model for solving the inverse problem in MRE. Second, this 3D BWM framework
will constitute a sophisticated numerical phantom for brain microstructural MRI (Fieremans and Lee 2018).
For example, cellular biomechanics can be readily incorporated in our composite model to explore the
underlying mechanisms of rapid changes of WM elasticity (Patz et al 2019). The high sensitivity of MRE
metrics to glial properties reported here might provide useful insights into the observed stiffness variations.
Third, it will allow the incorporation of additional WMmeasurements in addition to MRE/DTI, both in vivo
and ex vivo, towards increasing the specificity of neuroimaging. As an example, the addition of vascular or
perivascular spaces to the REV can create improved MRE protocols for the exploration of WM
hyperintensities (Gouw et al 2008). Fourth, it will enable the integration of new knowledge regarding the
mechanical failure of axons (Singh et al 2017) in neuroimaging studies of traumatic brain injury (Eierud et al
2014).

5. Conclusion

Motivated by the need to interpret the combined measurements of brain MRE and DTI, and to connect MRE
metrics (effective shear moduli) to brain white matter (WM) microstructure, we have developed a periodic
triphasic tissue model that can accommodate both mechanics and diffusion physics. The model consists of
parallel cylindrical inclusions (axons) surrounded by sheaths (myelin), and embedded in a matrix (glial cells
plus extracellular matrix). This study focuses on properties defined on the transverse plane, so a
two-dimensional REV defined perpendicular to the axons is considered. The mechanical and diffusional
properties assigned to each phase are homogeneous and isotropic, consisting of the shear viscoelastic moduli
(G ′

p,G
′ ′
p ) and diffusion coefficients (Dp), where p= axon,myelin, or glia. Shear deformation is imposed on

the REV under harmonic forcing at frequency of f= 50 Hz, which is typical of brain MRE, and the effective
properties are calculated by solving the motion and diffusion differential equations and averaging over the
REV. We concluded that myelinated WM can be appropriately represented by transversely isotropic MRE and
DTI constitutive models with metrics (G ′

eff, G
′ ′
eff) and Deff, respectively. We then performed a global sensitivity

analysis to determine which model parameters are important to the estimated REV-based MRE and DTI

metrics. The sensitivity analysis revealed that the effective loss
(
G ′
eff

)
and storage

(
G ′ ′
eff

)
moduli are very

sensitive to the fiber volume fraction, and the intrinsic storage (G ′
glia) and loss (G

′ ′
glia)moduli of the glial

phase. On the other hand, the effective phase angle ϕ is insensitive to all parameters other than the ratios
G ′ ′
axon/G

′
axon, G

′ ′
myelin/G

′
myelin, and G

′ ′
glia/G

′
glia, and the damping ratio, ξ, is expected to be more sensitive than ϕ,

by definition. The effective moduli are nonlinear functions of the fiber volume fraction, as opposed to
effective diffusion coefficient, which varies almost linearly. Lastly, the transverse metrics of both MRE and
DTI are insensitive to the axon diameter, assuming steady-state excitation, and uniform fiber diameters and
parallel fiber arrangement. Based on mathematical arguments, the relationship is expressed in the
dimensionless form given by (14).

Our numerical results are consistent with the limited anisotropic MRE and co-registered DTI
measurements available in the literature, specifically in the corpus callosum and corticospinal tract for normal
aging and ALS, respectively. The unidirectional composite model presented here is used for the first time to
model the distribution of harmonic shear stress on the cell level under MRE-relevant excitation, and for a
wide range of parameters. The unidirectional composite model can be extended to 3D in order to inform the
solution of the inverse problem in MRE by establishing which parameters should be included in the model
used for inversion. We studied MRE together with DTI because the latter determines the axis of anisotropy
for the former, and thus integrating these two modalities ushers in a promise to increase the sensitivity of
neuroimaging. Our findings promise to provide useful insights and thus help interpret in vivoMRE data.
Since the WMmodel is based on realistic cyto-architectures that can be related to histology, it will also aid in
establishing the biological basis of the WM viscoelastic moduli, and integrate MRE/DTI with other
modalities towards increasing the specificity of neuroimaging for aging, dementia, or traumatic brain injury
studies.
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