
Physics in Medicine & Biology
     

PAPER

Comparison of two-compartment exchange and
continuum models of dMRI in skeletal muscle
To cite this article: Noel M Naughton and John G Georgiadis 2019 Phys. Med. Biol. 64 155004

 

View the article online for updates and enhancements.

You may also like
The time-dependent diffusivity in the
abdominal ganglion of Aplysia californica:
experiments and simulations
Khieu-Van Nguyen, Denis Le Bihan, Luisa
Ciobanu et al.

-

Parameter estimation using macroscopic
diffusion MRI signal models
Hang Tuan Nguyen, Denis Grebenkov,
Dang Van Nguyen et al.

-

Connectomic consistency: a systematic
stability analysis of structural and
functional connectivity
Yusuf Osmanlolu, Jacob A Alappatt, Drew
Parker et al.

-

This content was downloaded from IP address 45.3.74.52 on 11/01/2024 at 22:21

https://doi.org/10.1088/1361-6560/ab2aa6
/article/10.1088/2057-1976/ab301e
/article/10.1088/2057-1976/ab301e
/article/10.1088/2057-1976/ab301e
/article/10.1088/2057-1976/ab301e
/article/10.1088/0031-9155/60/8/3389
/article/10.1088/0031-9155/60/8/3389
/article/10.1088/1741-2552/ab947b
/article/10.1088/1741-2552/ab947b
/article/10.1088/1741-2552/ab947b


© 2019 Institute of Physics and Engineering in Medicine

1. Introduction

Skeletal muscle microstructure is an important indicator of muscle’s functional ability, the production of 
mechanical work. Changes in myocyte size and type, as well as in the hierarchical organization of muscle tissue, 
have been associated with variations in functional ability (Häkkinen et al 1998, Boonyarom and Inui 2006, Lieber 
and Ward 2013). Pertinent to 3-D force transmission in skeletal muscle, the extracellular matrix surrounding 
muscle cells is thought to play a key role in force transmission from the myocyte to the tendon during muscle 
activation (Purslow 2002). Current methods of determining microstructural parameters include histology, 
electrical impedance, and dual x-ray absorptiometry, however, these methods are either highly invasive or only 
provide gross level information about muscle architecture. Diffusion-weighted magnetic resonance imaging 
(dMRI) offers an opportunity to estimate specific structural parameters of muscle microstructure in vivo, while 
avoiding the invasiveness of a muscle biopsy required for histological analysis (Galban et al 2004, Fieremans et al 
2017). dMRI probes microstructure due to its sensitivity to the influence of structural barriers on self-diffusion 
of water. dMRI has been used to track the orientation of axons (Beaulieu 2002) and muscle fibers (Lansdown et al 
2007) as well as provide microstructural parameter estimation for axons (Assaf et al 2008, Nguyen et al 2015), 
cancerous cells (Jiang et al 2016), and both cardiac (Froeling et al 2014, Mekkaoui et al 2017) and skeletal muscle 
(Galban et al 2004, Karampinos et al 2009, Fieremans et al 2017).

dMRI entails the use of magnetic gradients along directions chosen by the operator which sensitize the MRI 
signal to the random Brownian motion of the water molecules and therefore can be used to extract an apparent 

N M Naughton and J G Georgiadis

Comparison of two-compartment exchange and continuum models of dMRI in skeletal muscle

Printed in the UK

155004

PHMBA7

© 2019 Institute of Physics and Engineering in Medicine

64

Phys. Med. Biol.

PMB

1361-6560

10.1088/1361-6560/ab2aa6

15

1

15

Physics in Medicine & Biology

IOP

1

August

2019

Comparison of two-compartment exchange and continuum models 
of dMRI in skeletal muscle

Noel M Naughton1,2  and John G Georgiadis1,2,3,4

1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
2 Beckman Institute Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL,  

United States of America
3 Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States of America
4 Author to whom correspondence should be addressed.

E-mail: jgeorgia@IIT.edu

Keywords: two-compartment exchange, Kärger model, lattice Boltzmann method, diffusion MRI, skeletal muscle

Supplementary material for this article is available online

Abstract
Clinical diffusion MRI (dMRI) is sensitive to micrometer scale spin displacements, but the image 
resolution is  ∼mm, so the biophysical interpretation of the signal relies on establishing appropriate 
subvoxel tissue models. A class of two-compartment exchange models originally proposed by Kärger 
have been used successfully in neural tissue dMRI. Their use to interpret the signal in skeletal muscle 
dMRI is challenging because myocyte diameters are comparable to the root-mean-square of spin 
displacement and their membrane permeability is high. A continuum tissue model consisting of 
the Bloch–Torrey equation integrated by a hybrid lattice Boltzmann scheme is used for comparison. 
The validity domain of a classical two-compartment tissue model is probed by comparing it with 
the prediction of the continuum model for a 2D unidirectional composite continuum model of 
myocytes embedded in a uniform matrix. This domain is described in terms of two dimensionless 
parameters inspired by mass transfer phenomena, the Fourier (F) and Biot (B) numbers. The 
two-compartment model is valid when B � 1 and F � 1, or when F � 1 and F · B � 1. The model 
becomes less appropriate for muscle dMRI as the cell diameter and volume fraction increase, with the 
primary source of error associated with modeling diffusion in the extracellular matrix.
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diffusion coefficient along the chosen direction. In muscle, the apparent diffusion coefficient changes according 
to the effective diffusion time (∆ef f ) used during acquisition. In human skeletal muscle, cells are  ∼20–90 µm in 
diameter (Polgar et al 1973), and are surrounded by a semi-permeable membrane (sarcolemma), which has been 
reported to have a significant effect on dMRI signal (Hall and Clark 2017). The time evolution of the dMRI signal 
due to microstructural barriers depends on cell-scale structures due to the diffusion distance being  ∼20 µm for a 
typical ∆ef f  of 30 ms (Bolsterlee et al 2017). Subcellular structures are also important (Scheel et al 2013, Filli et al 
2016). Kinsey et al (1999) showed that the sarcoplasmic reticulum and mitochondria have important effects on 
the dMRI signal in both type I and type II fibers in fish muscle. Along with these intracellular structures, changes 
in the extracellular space has also been shown to effect the dMRI signal. Exercise (Froeling et al 2015), hybrid 
training (Sigmund et al 2014), ischemia (Oudeman et al 2016), weight loss (Galbán et al 2005), and age (Porcari 
et al 2018) have all been associated with changes in the extracellular structure and are reflected in the dMRI 
signal. These structural changes in the muscle are often associated with functional changes as well, motivating 
the need to understand how these changes in skeletal muscle microstructure, as measured with dMRI, affect the 
mechanical function of muscle. The extracellular compartment is also associated with a longer T2 relaxation time 
than the intracellular compartment, which may cause it to provide a stronger contribution to the dMRI signal, 
particularly for longer TE times (Heemskerk and Damon 2007).

dMRI is a sensitive probe of the microstructure at the micrometer scale, which is the length scale of water 
molecule displacement during a typical dMRI pulse sequence. On the other hand, clinical dMRI has a practi-
cal voxel resolution limit of  ∼1 mm3. All structural information below this spatial scale is ‘smeared’ but not 
lost. An established method to recover microstructural information at sub-voxel levels is based on exploiting 
the hierarchical organization of the skeletal muscle and prior knowledge. Consistent with muscle histology and 
diffusion tensor imaging studies (Heemskerk and Damon 2007, Heemskerk et al 2010, Oudeman et al 2016), a 
tissue model consisting of periodic arrays of myocytes surrounded by the endomysium matrix represents a parsi-
monious level of abstraction. This model is characterized by morphological (e.g. myocyte diameter, volume frac-
tion, etc) and physical parameters (diffusion coefficients, membrane permeability, etc). Unlike statistical models 
which depend on a priori dMRI signal representations, such tissue models allow the interpretation of dMRI 
signal in terms of biophysical parameters which can be assessed via independent histological assays (Jelescu and 
Budde 2017).

Methods of model parameter estimation from dMRI have been developed using both analytical and 
numer ical solutions of continuous diffusion models of biological tissue. Many analytical models use a 
 multi-compartment exchange approximation that results in a mathematical problem consisting of a set of cou-
pled differ ential equations that have a closed form solution. This method was first developed by McConnell 
(1958), was extended to include diffusion by Kärger (1988), and has been further developed by Stanisz et al 
(1997, 1998), Coatléven et al (2014) and Haddar et al (2016), while (Karampinos et al 2009) first applied it 
to muscle. This compartmental exchange method has been validated by multiple authors using Monte Carlo 
simulations (Szafer et al 1995, Stanisz et al 1997, Meier et al 2003, Nilsson et al 2010), as well as continuum 
based models (Li et al 2014). Additional authors have developed more advanced continuum based models of 
diffusion-weighted imaging (Hagslätt et al 2003, Hwang et al 2003, Xu et al 2007, Harkins et al 2009, Russell et al 
2012, Van Nguyen et al 2014, Beltrachini et al 2015). Monte Carlo models have also been developed and used to 
investigate how variations in skeletal muscle microstructure affect the measured signal and to improve dMRI 
encoding sequences in order to increase sensitivity to such variations (Hall and Alexander 2009, Lee et al 2013, 
Hall and Clark 2017, Bates et al 2017, Berry et al 2018). These continuum and Monte Carlo methods are more 
accurate than simplified analytical models, however, they are also computationally expensive, leaving compart-
mental exchange models an appealing option.

Previous authors’ validations of compartmental exchange models have been limited to parameter sets pre-
dominantly relevant to axons, as this was the first application area of the model (Stanisz et al 1997, Fieremans et al 
2010, Nilsson et al 2010, Nguyen et al 2015), however, skeletal myocytes have larger diameters, are more densely 
packed, and their membranes are more water permeable than these axons, thus presenting challenges to the com-
partmental exchange model’s ability to correctly model dMRI in skeletal muscle. Compartment models with 
and without exchange have been used in the literature to estimate skeletal muscle properties (Galbán et al 2005, 
Kim et al 2005, Saotome et al 2006, Karampinos et al 2007, 2009, Laghi et al 2017). While previous authors have 
speculated on the applicability of compartmental exchange models in these regimes, namely that the model will 
break down, to our knowledge no one has explicitly evaluated the limits of the models’ applicability in regards to 
interpreting dMRI data of muscle.

The scope of the present work is limited to determining if the compartmental exchange model, originally 
proposed by Kärger, is suitable for use in modeling dMRI in skeletal muscle. We answer this question by compar-
ing this model with a hybrid-lattice Boltzmann method solution of the Bloch–Torrey equation governing the 
dMRI signal, which is considered as an in silico phantom and the ‘ground truth’ of dMRI in skeletal muscle. In 
particular, we examine three assumptions made in the compartmental exchange model and how they relate to 
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its application in skeletal muscle. These assumptions are: (1) the short gradient pulse approximation, (2) the use 
of steady-state diffusion solutions for the extracellular compartments, and (3) the assumption of homogeneous 
signal distribution within each compartment. All three of these assumptions are expected to be violated when 
applied to clinical dMRI of skeletal muscle. We examine the degree to which violations of these assumptions 
affects the ability of compartmental exchange models to accurately match trends in the dMRI signal, as modeled 
by the numerical hybrid-lattice Boltzmann method solution. Further, an attempt is made to develop general 
criteria for the applicability of compartment exchange models by combining the various parameters associated 
with the underlying diffusion physics and drawing analogies to the lumped capacitance model prevalent in mass 
transfer literature. Other analytical models have been proposed which interpret dMRI data while ignoring the 
effect of the extracellular matrix (Novikov et al 2011, Fieremans et al 2017), but because of the extracellular 
matrix’s important role in force transmission, we restrict our focus to compartmental exchange models that 
allow the retention of this extracellular structural information.

2. Methods

2.1. Diffusion MRI in muscle
A typical dMRI experiment involves a diffusion encoding sequence followed by an imaging sequence to form 
the dMRI image. The diffusion sequence involves the application of a magnetic gradient, G(t), which dephases, 
and subsequently rephases, the precessing hydrogen protons. After the diffusion-sensitizing gradient is applied 
there is a non-recoverable loss of coherence due to the diffusion of water molecules within the voxel. Ignoring 
the imaging sequence, the time evolution of the dMRI signal is described by the Bloch–Torrey equation (Torrey 
1956),

∂M(x, t)

∂t
= −iγ[G(t) · x]M(x, t)− M(x, t)

T2
−∇ · (D(x)∇M). (1)

This equation describes the time evolution of the complex valued, transverse magnetic signal M  under an 
externally applied, spatially and temporally varying magnetic field (G(t) · x). Here i is the imaginary unit, γ  is 
the gyromagnetic ratio of 1H, x is the spin position vector, G(t) is the time-varying magnetic field gradient vector 
used to encode diffusion, T2 is the spin–spin relaxation time, and D(x) is the local diffusion coefficient.

A common diffusion-weighted sequence is the pulsed-gradient spin echo (PGSE) sequence proposed by  
Stejskal and Tanner (1965). In this sequence, shown in figure 1(a), a gradient of strength G is applied up to time 
t = δ , turned off until time t = ∆ and then turned back on in the opposite direction (or the same direction 
coupled with a 180◦ RF pulse). This sequence is characterized by gradient timing parameters of δ and ∆, which 
are used to define a b-value as b = γ2G2δ2(∆− δ/3). To aid in development of analytical solutions, the short 
gradient pulse (SGP) approximation is often employed, which takes the limit of the gradient time approaching 
zero (δ → 0) such that the diffusion sensitizing gradient is applied at a single instant. Under this assumption, 
solutions to the Bloch–Torrey equation solved over simple structures are possible (Tanner and Stejskal 1968, 
Söderman and Jönsson 1995, Szafer et al 1995), though simple structures can also be solved for more arbitrary 
pulse profiles (Callaghan 1997, Codd and Callaghan 1999), and solutions to multi-layered structures have been 
presented for a PGSE pulse by Grebenkov (2010). As a first approximation, diffusion is often assumed to be 
Gaussian, which allows the dMRI signal to be modeled as

S =

∫

V
M(x, TE)dx; ln

(
S/S0

)
= −bDapp, (2)

where S is the diffusion-weighted signal integrated over the voxel, S0 is the signal when no diffusion gradient is 
applied, and Dapp is the apparent diffusion coefficient of the voxel.

Equation (2) describes the signal of unrestricted diffusion with a constant coefficient. To model the effect 
of complex, realistic muscle microstructure on the dMRI signal (which is not described by a simple Gaussian 
model), it is necessary to introduce the diffusion barriers that characterize the microstructure. Skeletal muscle 
structure has a hierarchical order exhibiting a long-range organization of parallel, elongated cells (myocytes) 
surrounded by a semi-permeable (sarcolemma) membrane and embedded in an extracellular matrix made up of 
collagen fibers (endomysium). This organization inspires a simplified representation of the tissue as long cylin-
ders packed together in a hexagonal array (figure 1(b)). By imposing periodic packing of the cells, a representa-
tive elementary volume (REV) can be defined. The tissue model based on this REV is defined by seven param-
eters: intra- and extracellular diffusion coefficients, cell diameter, volume fraction, membrane permeability and 
intra- and extracellular T2 relaxation time. Both the intra- and extracellular domains contain semipermeable 
barriers which restrict the free diffusion of water, however, such restrictions cannot be economically modeled 
at the current spatial scale (micrometer). Examples of such barriers are the transverse tubular system, sarcoplas-
mic reticulum, mitochondria, collagen bundles in the endomysium and epimysium, capillaries, and adipocytes. 
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Instead they are accounted for by the use of effective diffusion coefficients (Din and Dex) which represent the mass 
transport coefficients in the homogenized intracellular and extracellular compartments (Galban et al 2004). The 
only diffusion barrier that is modeled directly is the myocyte membrane (sarcolemma), which is represented by a 
thin intercompartmental boundary with finite permeability. Unless a geometrical anisotropy is introduced in the 
packing of the myocytes, or by using elliptical cross-sections of the cylindrical fibers (Karampinos et al 2009), this 
model corresponds to a transversely isotropic diffusion tensor. Muscle exhibits transversely (x-y  plane) aniso-
tropic diffusion (Galban et al 2004, Karampinos et al 2009), however, the source of this anisotropy is still unre-
solved and outside the scope of the present study.

2.2. Numerical model
The lattice Boltzmann method (LBM) is employed to solve the Bloch–Torrey equation (1) over the prescribed 
REV domain in two dimensions. LBM is a mesoscale numerical scheme that can simulate transport phenomena 
on regular discrete grids and has been used to solve the advection-diffusion equation (Chen and Doolen 1998, 
Li et al 2013) and the Bloch–Torrey equation (Naughton et al 2019). The key elements of the LBM scheme to 
integrate the Bloch–Torrey equation are provided below for completeness. Using a D2Q5 lattice stencil, the dMRI 
signal is given by the amplitude of the complex-valued transverse magnetization,

M(x, t) =
4∑

i=0

g i(x, t), (3)

averaged over the REV, as implied by equation (2). The grid function g i(x, t) is the complex spin probability 
distribution function representing the two components of the magnetization vector. Using the Bhatnagar–
Gross–Krook model with a single relaxation time (τ ), the evaluation of g i is approximated by a diffusion step 
[g i(t) → g′

i(t)] at each node located at xi,

g′
i(x + ei · δx, t)− g i(x, t) = − 1

τ

[
g i(x, t)− geq

i (x, t)
]
, (4)

followed by a reaction step [g′
i(t) → g i(t + δt)],

g i(x, t + δt) = exp
(
− δt

T2
− iγGnxiδt

)
g′

i(x, t). (5)

The vectors ei  (i = 0, 1, 2, 3, 4) are the lattice directions for the D2Q5 stencil. The effect of spin diffusion is 
applied in the first step (4) by the LBM renormalization equation D = δx2(τ − 0.5)/3 δt , where D is the effective 
diffusion coefficient at xi and δx, δt  are the grid size and time step, respectively. The effects of T2 relaxation and 
forced precession from the applied magnetic gradient on the signal are included in the second step (5). This two-
step scheme [(4) and (5)] constitutes an explicit first-order in time and second-order in space numerical method 
for the integration of the Bloch–Torrey partial differential equation. The numerical integration is performed over 
the REV with modified periodic boundary conditions, which include the effect of the applied gradient as first 

Figure 1. (a) Pulsed gradient spin echo (PGSE) sequence for dMRI and (b) periodic muscle fiber model consisting of infinitely 
long cylindrical muscle fibers (intracellular compartment) bounded by an infinitesimally thin semi-permeable sarcolemma and 
surrounded by the endomysium (extracellular compartment). Solid rectangle designates the representative elementary volume 
(REV) in the x-y  plane.
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presented by Xu et al (2007), as well as interfacial boundary conditions that allow modeling of a semi-permeable 
sarcolemma membrane (Naughton et al 2019).

2.3. Two-compartment exchange model
The hybrid LBM scheme mentioned above has been shown to integrate the Bloch–Torrey equation accurately 
for the tissue model shown in figure 1(b) (Naughton et al 2019). One of the aims of this study is to determine 
if certain existing reduced models can approximate the predictions of the LBM scheme for the dMRI signal in 
certain physical parameter ranges. These reduced models employ analytic solutions of simplified or limiting 
cases, such as the short gradient approximation or long time limit solutions. One common model is the two-
compartment exchange (2CE) model introduced by Kärger (1988). The basic premises are that the MR signal in 
the REV can be decomposed into two components, one from the intracellular space (myocytes) and second from 
the extracellular space (endomysium), and that the dMRI signal is homogeneous in each compartment while 
allowing signal exchange between compartments. Under the 2CE model, the time evolution of the intra- and 
extracellular compartment signal, Sin and Sex is governed by the system of coupled differential equations

dSin

dt
= −4π2q2Dapp

in Sin −
1

τin
Sin +

1

τex
Sex −

1

T2,in
Sin, (6)

dSex

dt
= −4π2q2Dapp

ex Sex −
1

τex
Sex +

1

τin
Sin −

1

T2,ex
Sex, (7)

where q = γ|G|δ/2π, Dapp
in  and Dapp

ex  are the apparent diffusion coefficients of the intra- and extracellular 
compartments, respectively, τin and τex  are the mean residence times of spins in the two compartments, and T2,in 
and T2,ex are the T2 relaxation times of the two compartments. The total signal attenuation in the REV can be 
expressed as the linear superposition of the solutions in the two compartments,

S(q, t) = Sin(q, t) + Sex(q, t). (8)

This system of ordinary differential equations [(6) and (7)] has a closed-form solution (Stanisz et al 1998). This 
solution assumes uniform spin distribution at t  =  0 which results in the initial condition

1

τin
S0

in =
1

τex
S0

ex, (9)

where S0
in = νin and S0

ex = νex, with νin and νex being the volume fractions of the two compartments such that 
νin + νex = 1. From these relations, τex  is found to be τex = (τinνex)/νin, while τin is taken from Meier et al (2003)

τin =
d2

32Din
+

d

4κ
, (10)

where d is the cell diameter and κ is the membrane permeability.

Dapp
in,ex  are the apparent diffusion coefficients which represent the restriction to free diffusion caused by each 

compartment’s geometry and are generally different from the effective diffusion coefficients of each domain 
in the continuum tissue model discussed above. Dapp

in  is defined by the analytical solution for restricted diffu-
sion between two impermeable parallel plates and subject to the short gradient pulse (SGP) approximation. To 
account for the effect of finite duration diffusion gradients, an effective diffusion time (∆ef f ) is used in place of 
the diffusion time ∆. For a PGSE pulse ∆ef f = ∆− δ/3; leading to the expression first presented by Tanner and 
Stejskal (1968):

Dapp
in = −1

b
ln

[
2

1 − cos(2πqd)

(2πqd)2
+ 4(2πqd)2

∞∑
n=1

exp
(
− n2π2Din

∆ef f

d2

)1 − (−1)n cos(2πqd)(
(2πqd)2 − (nπ)2

)2

]
. (11)

Analytical expressions for the time evolution of the apparent diffusion coefficient in the extracellular space, 
Dapp

ex , are not readily available, so a long time limiting solution is used instead. The Maxwell–Garnett model of dif-
fusion for insulated cylinders is a low-order approximation and is accurate in the dilute packing limit (νin � 1) 
(Sen and Basser 2005)

Dapp
ex = Dex

(
1

1 + νin

)
. (12)

Several extensions of the Kärger 2CE model exist but have been employed for dMRI only in axons. Coatléven 
et al (2014) developed the model in a rigorous mathematical manner based on periodic homogenization tech-
niques applied to the Bloch–Torrey equation, while Fieremans et al (2010) also developed homogenization argu-
ments for its domain of validity. Both formulations assume that the long-time limit solution for diffusion is valid 
for each compartment, resulting in Dapp

in = 0. Because of the large size of the myocyte, this assumption is not valid 
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in muscle tissue. To estimate the apparent diffusion coefficients, Haddar et al (2016) presented an asymptotic 
model which requires the numerical solution of elliptic PDEs with source terms defined on the cell membranes. 
These extensions to the Kärger 2CE model are mathematically rigorous but either make assumptions that are not 
applicable to skeletal muscle or require the solution of PDEs, as opposed to ODES (see (6) and (7)). For this rea-
son we retain the original phenomenological formulation of the Kärger model. The chosen apparent diffusion 
coefficients [(11) and (12)] allow the parameterization of the 2CE model in terms of intrinsic (biophysical) and 
extrinsic (dMRI sequence) parameters of the tissue model without additional computational cost, par ticularly 
for characterizing the extracellular domain (Nilsson et al 2010, Haddar et al 2016).

Previous authors have shown good agreement between various formulations of two-compartment exchange 
(2CE) models and Monte Carlo (Stanisz et al 1997, Fieremans et al 2010, Nilsson et al 2010) or finite element 
(Li et al 2014) simulations of restricted diffusion in cell diameters smaller than 15 µm and volume fractions less 
than 0.70, which relates to typical values for axons. Myocytes are much larger (up to 90 µm) and are packed more 
densely (reaching volume fractions up to 0.95), so it stands to reason that the validity of the homogenization 
assumption made in the 2CE model needs to be revisited for muscle. Simulations were performed for a range of 
2CE model parameters, extending the microstructural regime from axons to myocytes. Systematic variation of 
model parameters and comparison with the continuum LBM model allows the delineation of the region of appli-
cability of the 2CE model. For the continuum model, spatial and temporal discretizations were chosen according 
to the cell diameter and are given in the supplementary information (stacks.iop.org/PMB/64/155004/mmedia).

For the purpose of this investigation, the LBM model is considered to be the ground truth that the 2CE model 
is attempting to emulate. The LBM model is based on a direct numerical solution of the Bloch–Torrey equation. 
As such, it may be considered to be an in silico phantom since it makes no assumptions about the pulse profile 
or exchange between compartments like the 2CE model does. While assumptions are made about the simplified 
structural representation of the muscle with the REV, such assumptions are also made by the 2CE model. Com-
parison with an in silico phantom allows testing whether the 2CE model is able to accurately represent the effects 
of structural features commonly found in skeletal muscle on dMRI signal.

3. Results

The 2CE model makes use of the SGP approximation, however, this approximation is often not valid for dMRI 
sequences employed in clinical settings due to hardware constraints and safety considerations. To investigate how 
the 2CE model behaves in cases where the SGP approximation is violated, simulations with the continuum model 
were performed for a cell diameter of 5 µm and the following dMRI PGSE sequence parameters: diffusion time 
(∆) of 50 ms, TE of 100 ms and three different gradient durations (δ) of 1 µs, 10 ms and 25 ms, for b-values of 0 to 
5000 s mm−2 (figure 2). The remaining biophysical parameters were chosen to lie within the range of published 
values available in skeletal muscle literature. The intra- and extracellular diffusion coefficients were 1.4 and  
2.2 µm2 ms−1, respectively (Morvan 1995, Saab et al 1999, Silva et al 2002, Ababneh et al 2005, Seland et al 2005, 
Helmer et al 2006, Babsky et al 2008, Åslund and Topgaard 2009), and T2 values were 32 ms for the intracellular 
domain and 100 ms for the extracellular domain (Saab et al 1999, Seland et al 2005). Unless otherwise noted, 
these values are used for all subsequent results. Impermeable cell boundaries were first assumed in order to allow 
direct comparison of the intra- and extracellular signals between the two models. When the SPG approximation 
is satisfied (δ = 1µs � ∆), there is agreement between the two models, particularly for the smaller intracellular 
volume fractions. For a larger volume fraction (vf  =  0.80), the 2CE model overestimates the signal attenuation 
compared with the LBM scheme. In all cases pertaining to the small diameter cells, there is agreement within 
5% between the two models, suggesting that the 2CE model behaves correctly, at least in terms of trends, even 
when δ � ∆ is not strictly satisfied, though progressively larger violation of the assumption will lead to larger 
inaccuracies (Li et al 2014). As the gradient duration (δ) increases, the 2CE model begins to progressively 
underestimate the signal attenuation. The 2CE model appears to perform well for small (5 µm) diameter cells, 
but muscle cells are typically much larger.

Figure 3(a) shows how the models compare for increasing cell diameter and a fixed volume fraction of 0.50. 
Again, the best agreement between the models occurs at the smaller cell diameters. For 5 µm diameter cells there 
is an average difference of 2.9% between the two models while for 80 µm diameter cells this average difference 
is 36.1%. Figure 3(b) shows the apparent diffusion coefficients (ADC) defined over only the extracellular space; 
recall that in these simulations the cell boundaries are assumed to be impermeable. Because the 2CE model is 
based on a long-time limit solution, it exhibits no sensitivity to cell diameter or b-value while the LBM solution 
clearly exhibits sensitivity to both.

As figure 3 indicates, the accuracy of the 2CE model degrades as the b-value increases. However, it is practi-
cal to limit our model comparison to clinically-relevant pulse sequence parameters and investigate how changes 
in physiological parameters affect the signal. Clinical dMRI acquisitions routinely involve only one b-value, 
and previous uses of the 2CE model in skeletal muscle (Galbán et al 2005, Karampinos et al 2009) have also 
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only used one b-value, so here a single PGSE pulse is employed with b  =  1000 s mm−2 and timing parameters: 
TE  =  100 ms, ∆ = 50 ms, δ = 10 ms. The results, shown in figure 2, suggest that the intracellular volume frac-
tion strongly affects the accuracy of the 2CE model. In order to further explore this behavior, simulations for 
multiple volume fractions were performed. In figure 4(a) the intracellular signal is plotted for increasing cell 
sizes; since the cells are impermeable, this signal is insensitive to volume fraction. For cell sizes less than 10 µm 
there is an average difference of 4.6% between the two models while for cells larger than 10 µm there is an average 
difference of 11.5%. In figure 4(b) the total intra- and extracellular signals are compared for various cell sizes, and 
in figure 4(c) only the extracellular signal is compared over a range of volume fractions. The Maxwell–Garnett 
diffusion approximation used in the 2CE model does not depend on cell size, so only one extracellular result 
exists for all cell sizes. Additionally, the analytical solution given by Perrins et al (1979) at the long-time limit for 
insulated disks in hexagonal packing is shown. This analytical solution is the most accurate limiting solution  
possible for the considered REV because it matches the prescribed geometry. The validity of the two-compart-
ment exchange model depends on the degree of spatial homogeneity in the signal within each compartment. 
This homogeneity is important in modeling the effect of intercompartment exchange, as well as justifying the 
long-time limit approximations in solving the diffusion problem. A direct method to determine the degree of 
homogeneity is to examine a fieldmap of the signal given by the results to the LBM scheme. Fieldmaps for a com-
bination of three volume fractions and three cell diameters are shown in figure 5.

Simulations up to this point have considered impermeable boundaries in order to compare the signal in 
the intra- and extracellular compartments separately, however, this consideration needs to be relaxed. Muscle 

Figure 2. Comparison of continuum and 2CE models for hexagonally packed 5 µm diameter cells with varying volume fractions 
(vf) and gradient timing (δ). The 2CE model is solved at many more b-values than the LBM model allowing the results to be 
represented by a continuous curve. Other PGSE timing parameters were ∆ = 50 ms and TE  =  100 ms.

Figure 3. (a) Comparison of continuum and 2CE models for hexagonally packed disks of increasing diameter and volume fraction 
of 0.50, and (b) comparison of extracellular ADC from the LBM scheme with the 2CE model (black dashed line). PGSE timing 
parameters were TE/∆/δ  =100/50/10 ms.

Phys. Med. Biol. 64 (2019) 155004 (15pp)



8

N M Naughton and J G Georgiadis 

cells are surrounded by a semi-permeable membrane (sarcolemma), which facilitates exchange between the cell 
interior and the surrounding extracellular compartment. There is no consensus value for the permeability of the 
sarcolemma but reported values range from 13 µm s−1 (Landis et al 1999) to 400 µm s−1 (Tanner 1978), with the 
upper range generally considered to be an overestimate (Fieremans et al 2017). A comparison of the 2CE and 
LBM model predictions was made for different values of sarcolemma permeability in the range of 0–200 µm s−1, 
and the results are shown in figure 6 for a volume fraction of 0.70.

4. Discussion

4.1. Advantages and limitations of compartmental models
The continuum problem formulated in section 2.2 constitutes a forward problem: the geometry and parameters 
of the composite tissue model are specified and the evolution of the signal is computed. The LBM scheme 
provides an accurate numerical solution to the forward continuum problem described by the Bloch–Torrey 
equation, while the two-compartment exchange (2CE) model provides an approximate solution subject to a 
number of limiting assumptions. As such, we consider the continuum LBM solution the standard against which 
the validity of the 2CE model can be determined. The purpose of this study is to evaluate if the 2CE model can 
be used to interpret dMRI signal from skeletal muscle. The advantage of general two-compartment models is 
that they consist of ordinary differential equations, which allows for substantially faster solution of the forward 
problem than the continuum model. This is important because many simulations are typically required to solve 
the inverse problem of dMRI, which involves extracting parameters from the measured signal. However, this 
speed advantage has to be assessed in light of the model accuracy.

Several authors have used two-compartment (Galbán et al 2005, Kim et al 2005) and two-compartment 
exchange (Karampinos et al 2009, Laghi et al 2017) models to interpret dMRI measurements in skeletal mus-
cle, so we take the opportunity here to assess the accuracy of these models when applied to a parsimonious tis-
sue model. Some of these attempts have limited their interpretation of dMRI signal only to the estimations of 
apparent diffusion coefficients. However, correct estimation of microstructural features of skeletal muscle, in 
particular pertaining to the extracellular matrix which surrounds skeletal muscle, is important in analyzing the 
transmission of force generated during muscle contraction (Purslow 2002). This motivates the use of biophysical 
tissue models which preserve important features of the microstructure, such as the histoarchitecture of the extra-
cellular matrix (endomysium). Skeletal muscle cross-sections reveal irregular, convex polygonal myocytes sur-
rounded by a contiguous endomysium matrix. Models that explicitly consider such structural features (such as 
the 2CE model) ultimately must account for this disorder, however, in order to provide confidence in their ability 
to represent changes in the underlying microstructure, it is necessary to first compare them to more ordered 
structural systems such as the REV considered here.

4.2. Limiting assumptions of compartmental models
2CE models are based on a number of limiting assumptions about the tissue structure which have been shown to 
be appropriate in modeling diffusion in axons (Stanisz et al 1997, Fieremans et al 2010, Nilsson et al 2010, Nguyen 
et al 2015), but skeletal muscle has structural characteristics which are not consistent with these assumptions. 
Several authors have commented on the limits of these assumptions, however, to the best of our knowledge, no 
one has systematically investigated the accuracy of two-compartment models when applied to skeletal muscle. 
We began our investigation by modeling tissue in a regime where two-compartment models are known to be 
accurate (small diameter cells subject to the SPG approximation), and then extended microstructural parameters 
one at a time to encompass typical values of muscle dMRI (gradient duration, diameter, volume fraction, and 

Figure 4. (a) Comparison of intracellular signal versus cell diameter, (b) total signal versus volume fraction for multiple cell 
diameters, and (c) extracellular signal versus volume fraction for multiple cell diameters.
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permeability). By comparing with the continuum numerical solution, the accuracy of the 2CE model for muscle 
can be addressed, its weaknesses evaluated, and suggestions made for further improvements. While the ultimate 
goal of such models is to use them in an inversion process capable of determining microstructural parameters 
based on measured dMRI signal, a prerequisite for accurate inversion is the ability to correctly characterize the 
forward problem of how microstructural parameter changes relate to changes in the dMRI signal. Therefore, we 
restricted our analysis to how the 2CE represents the underlying physics and did not consider its usefulness in the 
inversion processes of fitting the model to dMRI measurements.

4.3. Short gradient pulse approximation
Figure 2 demonstrates two advantages of the 2CE model. First, the results underline the effectiveness of the SGP 
approximation in modeling the intracellular signal. This approximation involves the adjustment of the signal 
decay by defining an effective diffusion time, ∆ef f , to account for limited finite gradient times. For small gradient 
timings δ, the 2CE model overestimates the signal attenuation, but as δ increases, this trend is reversed. While it 
appears that the model is most accurate for δ  =  10 ms, this is coincidental. The effect of increasing δ causes the 2CE 
model to progressively underestimate signal attenuation, and this value happens to correspond to the point where 
the initial overestimate of the model for small δ and the gradual underestimation from increasing δ cancels out. For 
all gradient timings there is general agreement between the two models, particularly for b-values  <1000 s mm−2,  
suggesting that for small cell diameters, the violation of the short gradient pulse approximation, up to the extent 
studied, does not affect the validity of the 2CE model. Li et al (2014) examined the case when δ = ∆ and found 
that the SGP approximation was not appropriate in such a case, however, for moderate violation as examined 
here (δ = ∆/2), the SGP approximation appears to still be sufficient. The second advantage of the 2CE model 
is the ability of the extracellular signal to account for changes in the intracellular volume fraction at low volume 
fractions. It is known that the Maxwell–Garnett approximation breaks down as the volume fraction increases, 
which is consistent with the increasing disagreement between the models for the larger volume fraction.

4.4. Modeling extracellular space as steady-state diffusion
Healthy skeletal muscle consists of large diameter (20–90 µm) cells, although atrophied myocytes can be smaller. 
For 5 µm cell diameters, figure 3(a) shows agreement between the continuum and two-compartment model 
predictions over a wide range of b-values. The sensitivity of dMRI diffusion displacements (and ability to resolve 
smaller spatial scales) increases with b-value. As the cell diameter increases, the error in the 2CE model increases 
and this can be attributed to inaccuracies in modeling the extracellular signal. Figure 3(b) indicates that there is 
little variation in the signal as b-value increases for small cell diameters, so the assumption that the extracellular 
signal is represented by the long-time limit is valid. However, as the cell diameter increases for a fixed volume 
fraction, so does the size of the extracellular domain. Larger extracellular domains means that the diffusing 

Figure 5. Local signal fieldmaps for cell diameters of 5, 40 and 80 µm (top to bottom) and volume fractions of 0.25, 0.50 and 0.75 
(left to right).
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spins will explore less of the extracellular space for a particular ∆, thus leading to stronger spatial gradients in 
the extracellular domain (figure 5). These gradients are not associated with a mono-exponential decay of the 
extracellular signal and this behavior is not approximated by the long time limit solution; the long-time limit 
solution is not affected by changes in cell diameter or b-value (Sen and Basser (2005)).

Healthy skeletal muscle cells are densely packed with volume fractions up to 0.95, so the results of figure 3 for 
a volume fraction of 0.50 need to be extended. Figure 4 shows the joint effect of cell diameter and volume frac-
tion on the different components of the dMRI signal. For low volume fractions and small cell diameters, there is 
good agreement between the two models and this can be attributed to the fact that the Maxwell–Garnett approx-
imation is more accurate at smaller volume fractions, and smaller cell diameters allow for the long-time limit 
state to be reached earlier. The effect of volume fraction is demonstrated in figure 4(c) which shows how the error 
in the extracellular signal for the 2CE model increases with volume fraction. The continuum model results conv-
erge and agree (in trend) with the analytical long-time solution developed by Perrins et al (1979), rather than the 
2CE model. However, the analytical solution is unique to the periodic hexagonal packing employed in the LBM 
simulations and is not representative of other packing arrangements. Others (Nilsson et al 2010, Nguyen et al 
2015) have found that the 2CE model is well suited for estimating volume fraction by solving the inverse prob-
lem, however, their investigations were limited to volume fractions below 0.70 where the 2CE model agrees with 
the LBM solution.

4.5. Homogeneous signal distribution assumption
The interaction between the effects of cell diameter and volume fraction on the applicability of the long time 
limit approximation is illustrated in figure 5. For small diameters (5 µm) the extracellular signal is homogeneous, 
suggesting that the long time limit is regime is achieved. As the cell size increases and when the volume fraction 
creates an extracellular topology such that the distance between diffusion barriers (in this case sarcolemma 
membranes) is larger than the diffusion distance (∼

√
D∆), signal gradients within the domain appear, thus 

weakening the homogeneous signal assumption of the 2CE model. The existence of such gradients helps 
explain the trends shown in figures 3 and 4, where larger cell diameters and volume fractions are associated with 
larger discrepancies between the 2CE and continuum LBM models. On the other hand, as the volume fraction 
increases, the extracellular length scale decreases, leading to better approximation by the long time limit. This 
is in agreement with the results of Meier et al (2003), and with figure 4(c) which shows that the LBM scheme’s 
predictions of the extracellular signal for all cell diameters converge as the volume fraction increases. The 
numerical solutions approach the analytical solution of Perrins et al (1979), suggesting that sufficiently dense-
packed configurations satisfy the long time limit approximation. This is most clearly seen in figure 5 for a 40 µm 
diameter cell. The extracellular signal distribution contains spatial gradients for a volume fraction of 0.50, but 
these gradients are reduced and the domain becomes more homogeneous as the extracellular space becomes 
more restricted when the volume fraction is increased to 0.75.

Creating signal gradients in each compartment also affects the spin exchange between the compartments. 
Intercompartmental exchange in the LBM scheme is related to the signal difference across the membrane inter-
face (Naughton et al 2019), and not the average compartment values, as per the 2CE model. Decreasing the mem-
brane permeability increases these interfacial differences, thus exacerbating the discrepancies between the two 
models. For small cell sizes and as the permeability increases, figure 6(a) shows that the 2CE model remains 

Figure 6. (a) Comparison of the two models for changes in permeability for different cell sizes and a volume fraction of 0.70. (b) 
Comparison of the S and S0 signals separately. There is good agreement between the two models for the S0 signal while the S signal 
shows increased attenuation in the LBM scheme as the permeability increases. It is the ratio of the S and S0 signals in the LBM 
solution that produces the change of slope in (a) while the lack of signal attenuation in the 2CE model results in the absence of a 
slope change.
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accurate for permeability values up to  ∼30 µm s−1, but beyond this value, the two models diverge. For larger cell 
sizes, the agreement is poor for all permeabilities due to other, already discussed, inaccuracies in the 2CE model. 
Figure 6(b) shows that this disagreement is mostly the result of failure in modeling the diffusion-weighted signal. 
While the S0 signals are in good agreement, the signal (S) predicted by the 2CE model does not exhibit the same 
amount of attenuation as seen in the LBM model for increasing permeability. This suggests that the deficiency of 
the 2CE model does not come from the intercompartmental exchange term per se, as it would also manifest itself 
in the case where no diffusion gradient is applied. There is some disagreement in the predicted S0 signals for 80 µm  
diameter cells suggesting that as the compartment size increases, spatial gradients develop at the membrane 
interface due to the different compartment T2 values. However, the poor accuracy of the diffusion-weighted 
signal implies that the inaccuracy of the 2CE model is mostly due to the diffusion-weighted terms in the 2CE 
model. The contribution of finite permeability cannot be estimated by the effective diffusion coefficients of the 
two compartments under the assumption that they are separated by an impermeable wall (as assumed by the 
2CE model). The observed change in slope of the LBM solution for 5 and 10 µm diameter cells in figure 6(a) for 
increasing permeability is a result of the difference in T2 for the intracellular and extracellular compartments. 
The ‘hump’ is a manifestation of a much smaller T2,in (32 ms) than T2,ex (100 ms). If the T2 values are equal, or if 
T2,ex is smaller than T2,in, there is instead a monotonic decrease of the signal ratio with increasing permeability 
(results not shown). This behavior has also been observed by Harkins et al (2009). These results suggest that while 
two-compartment (and Kärger) models are accurate for small diameter cells that are not tightly packed, they 
are not sufficient for large diameter, tightly packed cells. Consequently, the indiscriminate approach of using 
the general 2CE model as formulated for solving the inverse problem from muscle dMRI signal is not justified. 
Instead, we propose a more nuanced approach involving the examination of the parameter domain where 2CE 
is accurate.

4.6. Scaling analysis of compartmental exchange model
Previous authors have discussed the limits of the two-compartment exchange model; it is useful to briefly revisit 
some of their points and expand upon them in light of more recent results. Spatial signal homogeneity within 
each compartment is a key qualitative premise of the compartmental exchange model. We propose using key 
characteristic length and time scales to delineate the domain of applicability of the homogeneity assumption. 
Stanisz et al (1997) describes the three relevant length scales associated with the PGSE pulse: the diffusion length 
(ld =

√
Dtd ), the restriction length (lr, typically the cell diameter) and the de-phasing length (lg = D/γG). 

Disparities between these length scales define different domains of signal behavior. For example, the Kärger model 
typically assumes ld � lr , which is necessary for the compartmental diffusion to be Gaussian. Relevant time 
scales in the present problem are the diffusion time (td = ∆ef f ) and exchange time scale (τi). For the homogeneity 
assumption to hold, the mass exchange between compartments should be barrier-limited, which is characterized 
by τi � l2r /D (Moutal et al 2018) and should also be measured in the slow exchange regime, i.e. τi � 1/q2Dex 
(Meier et al 2003). These constraints are satisfied for small cell sizes and low membrane permeability (Fieremans 
et al 2010, Coatléven et al 2014, Haddar et al 2016). Fortuitously, this applies to myelinated axons, hence the 
widespread applications of the 2CE model in brain white matter dMRI, however, as seen above, extending this 
model to muscle is not warranted. Analyzing the breakdown of the 2CE model in terms of the above characteristic 
scales is useful to show not only why such models do not work in muscle, but also to develop some generalized 
bounds (similar to those done by Moutal et al (2018)) which should help guide future model development.

4.7. Generalized spatial and temporal bounds from mass transfer
The homogenization approximation made in compartmental exchange models is also made in the field 
of mass transfer (the lumped capacitance approximation). As such, it is useful to draw an analogy with the 
dimensionless numbers developed in that field, namely the Biot and Fourier numbers. The mass transfer Biot 
number (B = κL/D where L is the characteristic length scale of the particular homogenized compartment, often 
the volume to surface area ratio) is the dimensionless ratio of the membrane permeability to diffusivity of the 
compartment. The Fourier number (F = tdD/L2) is the ratio of the diffusion distance to the compartment’s 
length scale. When F � 1, the entire compartment is probed by the diffusing spins leading to the validity of a 
long time limit approximation. In this case, the accuracy for the 2CE model is determined by the Biot number. 
For B � 1 (typically B  <  0.1), the compartment can be modeled as a single homogeneous domain in terms of 
mass transfer because the mass transfered through the membrane (associated with signal gradients near the 
boundary) is small compared with the mass diffused within the compartment. The conditions of large Fourier 
and small Biot numbers are satisfied for myelinated axons. However, the 2CE model can also be applicable in 
the short diffusion time limit. In this short time limit of F � 1, rather than being on B, the constraint is on the 
combination of F and B such that F · B � 1 (F · B = tdκ/L). This constraint implies that the diffusion distance 
is much less than the length scale of the compartment, so signal gradients are confined in a thin boundary layer 
in the vicinity of the membrane resulting in a predominantly homogeneous signal distribution. This criterion 
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is only qualitative as it does not address the magnitude of the signal gradients at the membrane. This regime can 
be seen in figure 4(a), where the intracellular signal agrees for small cell sizes (F � 1) and also for large cell sizes 
(F � 1). There is also a limited effect of the permeability in the formulation of this criterion for the homogeneity 
approximation: κ must be small enough that F · B � 1.

The above conditions suggest regimes where the key underlying assumption for the 2CE model (the signal 
in each compartment can be considered homogeneous) is valid, but they do not address the other limitations 
of the 2CE model in modeling the evolution of the signal in each compartment. At high volume fractions, for 
example, it is possible that the extracellular compartment satisfies F � 1 and B � 1, however, this only suggests 
that the signal in this compartment is homogeneous, not that the 2CE model is appropriate. Kärger-type models 
also hinge on the assumption that the compartmental diffusion coefficients can be modeled by the Gaussian 
(long-time limit) solution of the signal in that compartment. This is also true when the model is constructed 
on the basis of formal homogenization theory (Fieremans et al 2010, Coatléven et al 2014). A more appropri-
ate phenomenological approach is to modify the requirement to account for the time-dependence of the ADC, 
particularly when modeling the intracellular compartment (Stanisz et al 1997, Karampinos et al 2009). However, 
using such an approach for the extracellular space is hampered by a lack of analytical solutions for the tortu-
ous extracellular geometry (Li et al 2014, Haddar et al 2016). Some proposals to overcome this obstacle include 
using numerical, long-time limit solutions, from which the modified ADC is derived based on a tortuosity factor 
(Fieremans et al 2010, Nilsson et al 2010, Li et al 2014). However, as figure 4(c) shows, even when an accurate ana-
lytical solution is available, the long-time limit approximation for the extracellular space is not appropriate when 
ld � lr. Accounting for this time dependence of the extracellular compartment’s ADC requires solving elliptic 
partial differential equations (Haddar et al 2016), which is of debatable advantage compared with directly solving 
the Bloch–Torrey equation numerically, as done here with the LBM scheme, since the Bloch–Torrey equation is 
of the same type as the equations proposed in Haddar et al (2016).

4.8. Applicability of compartmental exchange models in modeling dMRI of skeletal muscle
The numerical results presented here suggest that the current 2CE model formulation is in general not suitable 
for skeletal muscle due to inaccuracies in handling larger cell sizes, high volume fractions, and finite permeability 
values. These inaccuracies arise due to incompatibilities between the structural organization of skeletal muscle 
and the underlying assumptions of compartmental exchange models. While only compartmental exchange 
models are examined here, these results illustrate that caution is required in adapting any microstructural model 
of diffusion from white matter to skeletal (and cardiac) muscle since many of them rely on similar assumptions 
about the tissue organization. However, the introduction of the dimensionless numbers F and B does point to 
the possibility that there may exist possible regimes of applicability for the 2CE model in muscle. Using typical 
parameters for skeletal myocytes (diameter of 50 microns, diffusion coefficient of 2 µm2 ms−1, membrane 
permeability of 20 µm ms−1, endomysium thickness of 3 µm, and a diffusion time of 50 ms), one finds that 
the intracellular compartment is characterized by F  =  0.04 and F · B = 0.02 and the extracellular compartment 
by F  =  11 and B  =  0.03. Both compartments satisfy the validity criteria for the two-compartment model 
approximation, with signal evolution in one compartment in the short time limit while the other is in the long 
time limit. By combining long and short time limit solutions for the respective compartments it may be possible 
to refine the two-compartment model to apply to skeletal muscle, however, the 2CE model is not currently 
formulated in this fashion. A better method for determining the effective diffusion coefficient of the extracellular 
compartment needs to be developed, as well as an understanding of how the long and short time limit solutions 
interact through the exchange term.

dMRI is less developed for skeletal muscle, not only for historical reasons but also because the interpreta-
tion of the biological basis of the signal is more complex than neural tissue. Developing an accurate 2CE model 
for skeletal muscle would aid in interpreting dMRI measurements because of the efficiency with which the 2CE 
model can be employed in solving the inverse problem. We have compared a two-compartment exchange model 
(2CE) with a lattice Boltzmann method (LBM) model and demonstrated that, although the 2CE model is accu-
rate for brain tissue, such models are not appropriate for skeletal muscle. The random permeable barrier model, 
another analytical model of skeletal muscle diffusion, abstracts the extracellular compartment as random barri-
ers (Fieremans et al 2017). The topology of the extracellular compartment is an important functional element of 
the hierarchical extracellular matrix (ECM) of muscle, so this simplification reduces the ability to extract realistic 
microstructural parameters from muscle dMRI measurements. Since the configuration of ECM is intimately 
related to force transmission (Karampinos et al 2009, Lieber and Ward 2013), reduction in structural informa-
tion will diminish the ability of dMRI to inform micro-mechanical models of skeletal tissue. Both analytical 
models appear to be lacking in their ability to accurately model the underlying extracellular microstructure, 
which gives rise to diffusion-weighted signal. In order to interpret dMRI measurements quantitatively in relation 
to the skeletal muscle microstructure (particularly its extracellular structure), we propose reverting to numerical 
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methods, such as Monte Carlo, finite difference, finite element, or LBM to solve the Bloch–Torrey equation on a 
continuum tissue model.

4.9. Future work and experimental considerations
This study is numerical in nature. Because the LBM model is based on a direct numerical solution to the Bloch–
Torrey equation, which in general is considered to capture all the relevant MR physics, it serves as an in silico 
phantom of dMRI. Comparing the model predictions with measurements from a physical phantom (mimicking 
the REV configuration) would introduce noise and artifacts from the imaging process while only serving to 
prove that the LBM model is an accurate solution of the Bloch–Torrey equation. This has already been proven 
by Naughton et al (2019). Accounting for experimental noise and imaging artifacts is important, and any model 
of dMRI must wrestle with this issues, however, such models must first be shown to reflect correct diffusion MR 
physics, which the 2CE model is found not to do.

The applicability of any model of skeletal muscle dMRI must also be tested against ex vivo and in vivo experi-
ments of skeletal muscle dMRI. Such experiments would require imaging a region of the muscle followed by 
excision, sectioning, and histological examination. This would allow the direct measurement of structural 
parameters such as cell diameter and volume fraction. However, there is no straightforward method of measur-
ing diffusion coefficients and membrane permeability. This again points to the advantage of using in silico phan-
toms where these parameters can be precisely controlled and compared. Comparisons of any model of dMRI of 
skeletal muscle should also consider the effect of PGSE pulse parameters on the forward problem, particularly 
diffusion time, which has been shown to have a strong influence on the signal. As the scope of this work is limited 
to evaluating if the 2CE model is appropriate for use in skeletal muscle, which it is found to not be, the effect of 
pulse parameters was not considered here. Forthcoming work will consider the effect of such pulse parameters 
on the LBM model.

5. Conclusion

The present numerical study is driven by the need to assess the applicability of the two-compartment 
exchange (2CE) model for the simulation of the dMRI signal in muscle. A two dimensional composite tissue 
model consisting of a periodic array of cylindrical cells is considered. The 2CE results are compared with the 
continuum solution obtained by solving the Bloch–Torrey equation numerically via a hybrid-LBM scheme. This 
comparison shows that the 2CE model is accurate for small diameter cells with low cell volume fraction and 
membrane permeability, but it becomes progressively inaccurate as diameter and cell volume fraction increase. 
It is shown that this inaccuracy is due to incompatibilities between the structural organization of skeletal muscle 
and the underlying assumptions of the 2CE model. These results illustrate that caution is required in adapting 
any microstructural model of dMRI from interpreting axonal microstructure to skeletal and cardiac muscle 
microstructure as many of the assumptions of the compartmental exchange are common to other models. 
A systematic description of the valid domain of the 2CE model is proposed in terms of two dimensionless 
parameters inspired by the field of mass transfer: the Fourier number (F), defined as the ratio of diffusion distance 
to cell length scale, and the Biot number (B), the ratio of intercompartment exchange to diffusion flux. The 2CE 
model is valid for B � 1 and F � 1 as well as F � 1 and F · B � 1. The signal in each compartment is examined 
separately and the major source of inaccuracy is found to be associated with errors in modeling diffusion in the 
extracellular space.
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