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ABSTRACT
Due to its non-invasive nature, diffusion-weighted MRI (dMRI)
has shown promise as a method to quantify skeletal muscle’s mi-
crostructure; however, connecting the dMRI signal of muscle to the
underlying microstructure is difficult. Numerical models of dMRI
can parameterize this relationship, but the associated computa-
tional expense has prohibited extensive use. Here, efficient numeri-
cal methods are presented to address this problem. In particular, a
meta-model representation of a lattice Boltzmann model of dMRI
is formulated and shown to be both accurate and several orders of
magnitude faster to evaluate. It is also demonstrated how such a
meta-model can help inform dMRI pulse profile selection in encod-
ing microstructural information into the dMRI signal. Additionally,
histologically-informed simulations are performed, allowing com-
parison of the numerical model’s simplified parameterization with
the more complex topology of skeletal muscle. Finally, an efficient
inversion method is proposed to infer microstructural parameters
of muscle from dMRI signal using a GPU-accelerated numerical
model. The inversion method is able to infer microstructural pa-
rameters from dMRI signal when the underlying geometry matches
the numerical model’s, however, the simplified numerical model
does not agree with simulations of more complex muscle tissue.
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1 INTRODUCTION
Healthy muscle is linked to increased quality of life measures
[19, 23], particularly among the aging population [35]. Muscle’s
functional ability is intimately linked to its structural organiza-
tion. Muscle has a hierarchical structure leading to a hierarchical
multi-scale organization, which ranges from themacro-scale (whole
muscle tissue) through the micro-scale (muscle cell organization)
down to the nano-scale (actin-myosin cross-linked chains). At the
micro-scale, individual muscle cells (myocytes) are elongated fibers
that are tightly packed together. Muscle fibers are surrounded by,
and connected to, a collagenous extracellular matrix (ECM), which
plays an important role in force transmission [32]. Understanding
changes in this microstructure is a necessary first step towards
developing diagnostic tools, interventional techniques and rehabili-
tation methods to improve muscle function.

A better measurement of muscle structure will improve our
understanding of how muscle functions, especially in instances
when autonomous movement is impaired, making measures of
functional ability difficult. Such conditions are found during fetal
development and for bed-ridden, comatose, or injured individuals.
Better measurements will also provide insight into the physiologi-
cal changes of muscle during aging [13] and muscular dystrophy
[41]. Measuring the muscle’s microstructure allows combining of
functional measures of muscle ability, such as force measurements,
with structural measurements, enabling increased understanding
of the different phenomena affecting muscle function. Functional
measurements of muscle convolve many different effects with the
effects of muscle structure [41], such as the motivation of the sub-
ject [25], neural-muscular coordinations [16, 37], lipid infiltration
[4], metabolic changes [5], and protein expression [20].

By independently measuring muscle’s microstructure, functional
measures can be normalized by these measurements, enabling
deeper understanding of the influence that both microstructure and
physiology have on muscle’s functional ability. Currently, biopsy
and histology are the best methods available to investigate this mi-
crostructure, but these ex-vivomethods are invasive, labor-intensive,
and only examine a small region of the muscle. A promising alterna-
tive to these techniques, however, is diffusion-weighted magnetic
resonance imaging (dMRI). In contrast to biopsy and histology,
dMRI provides quantitative measures of muscle microstructure in a
non-invasive and in-vivo way. It can also measure microstructure
throughout the entire muscle as opposed to biopsy’s inherently
local nature. These advantages enable the possibility of measuring
muscle microstructure in situations that heretofore have not been
considered feasible.
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Diffusion-weighted MRI measures the cumulative effect of wa-
ter molecule movement due to diffusion. Microstructural barriers
within and surrounding individual muscle fibers restrict the free-
diffusion of water, leading to anisotropic diffusion in the tissue.
Water diffuses faster in the axial direction of the muscle fiber than
in the transverse direction where barriers, such as cell membranes,
restrict the water molecules movement. The root-mean-squared
displacement of the water molecule in each voxel is used to calcu-
late an apparent diffusion tensor, which reflects the average effect
of these microstructural restrictions on the self-diffusion of water.
Although the resolution limit of clinical dMRI is often ∼ 1 − 2 mm,
the diffusion distance of the water molecules during the measured
diffusion time is ∼ 10 µm. As such, the effects of diffusion barriers
measured by the dMRI signal are only related to structures at this
ten micron length scale, thus allowing the signal in each voxel to
be related to the muscle cell microstructure.

Although the measured dMRI signal is reflective of the underly-
ing microstructure, the relationship with morphological parameters
of muscle is not straightforward. Many analytical models that have
been successful in explaining diffusion in the brain are not appro-
priate to use in muscle due to the dense packing and larger sizes of
muscle cells compared with axons [26, 27]. The models that do exist
ignore the effects of the ECM [7], however, due to the ECM’s effect
on force transmission, models capable of estimating ECM’s proper-
ties are desired. This leaves numerical models of dMRI as the best
candidates. Numerical models have been developed using an array
of methods such as finite difference [15, 34, 43], finite elements
[3, 31, 40], Monte Carlo [10], and lattice Boltzmann [29]. Compared
with analytical models, numerical models are orders of magnitude
more expensive to evaluate, and with five to nine independent
parameters, there is limited ability to sample all possible parame-
ter combinations. These constraints motivate the development of
methods that maximize the usefulness of every model evaluation
in order to allow efficient use of computational resources.

In this paper we present techniques to leverage precomputed
datasets andHPC resources, such asmulti-core processing andGPU-
acceleration, to both gain insight into how muscle microstructure
impacts dMRI signal and also to infer microstructural parameters
of the muscle from dMRI measurements. These techniques allow
efficient utilization of computational resources, while enabling the
use of fitting techniques to infer microstructural parameters from
numerical model’s of dMRI signal that had only been possible with
analytical models before. In section 2 we present a numerical model
of dMRI in skeletal musclemicrostructure. In section 3we show how
the model can be efficiently approximated with a polynomial meta-
model, and how this meta-model allows investigations that were
computationally prohibitive with the previous model. In section
4 we show how our simplified numerical model compares with
more complex and realistic simulations of skeletal muscle. Finally
in section 5 we present an inversion scheme to infer microstructural
parameters of skeletal muscle from dMRI measurements.

2 DESCRIPTION OF MUSCLE dMRI MODEL
Skeletal muscle has a relatively uniform cross-section geometry
(Figure 1). Our model is premised on abstracting this uniform struc-
ture as a periodic unit cell, or representative elementary volume

Figure 1: Left panel: Example of skeletal muscle cross-
section taken from chicken leg (by permission of E. Per-
reault lab). Right panel: representative elementary volume
(REV) used as the periodic muscle fiber model showing the
simplified representation of the extracellular domain (blue),
the individual muscle cells (green), and the semi-permeable
sarcolemma membrane surrounding them (red).

(REV), with periodic boundary conditions, thus allowing a parsi-
monious parameterization of the muscle microstructure. The REV
consists of hexagonal cylinders packed together and surrounded by
a semi-permeable membrane (sarcolemma). The hexagonal cylin-
ders are assumed to be infinitely long, thus reducing the problem
to 2-D [29]. Parameterizing the REV yields seven microstructural
parameters that can be independently varied. They are the two
geometrical parameters of cell diameter and cell volume fraction,
as well as the five tissue parameters of membrane permeability, in-
tracellular and extracellular diffusion coefficients, and intracellular
and extracellular spin-spin relaxation (T2) time.

With this parameterized REV, we use the lattice Boltzmann
method (LBM) to solve the the Bloch-Torrey equation over the
REV, which is the governing partial differential equation of diffu-
sion MRI [29]. Our model is written in Fortran 90 with two versions
developed. One was written with Message Passing Interface (MPI)
to utilize multiple CPUs. This MPI-enabled model has been shown
to scale efficiently up to at least 168 cores [29]. A second version of
the model was written using the same Fortran code but adding Ope-
nACC directives to allow GPU-acceleration. This GPU-accelerated
version of the model was found to be approximately 8x faster than
a single core (Xeon E5-2600v4 2.20 GHz) implementation of the
code when run on Nividia Pascal Titan X GPUs.

To simulate the dMRI signal, we use the pulsed-gradient spin
echo (PGSE) pulse, which consists of two equal and opposite pulses
separated by a diffusion time. The PGSE pulse is a traditional
diffusion-weighting pulse [38] that can be parameterized by gra-
dient strength (g), diffusion time (∆) and gradient duration, which
was held constant at 5 ms for all simulations. dMRI measures the
diffusion of water in the direction of the applied gradient. Multiple
gradient directions are used to measure the effect of microstructure
on the diffusion of water in each direction. These measurements
are used to calculate an anisotropic apparent diffusion tensor us-
ing algorithms from the fanDTasia Matlab toolbox [1] rewritten in
Python 3. This apparent diffusion tensor represents the cumulative
impact of microstructural restrictions on the free diffusion of water;
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Figure 2: Relative error of meta-model compared to under-
lying LBM model for different order polynomials.

its deviation from water’s free-diffusion coefficient in a particular
direction is indicative of the microstructural restrictions in that
direction [2, 11]. From this tensor, six dMRI metrics are calculated,
which describe the principle directions of the tensor (λ1, λ2, λ3),
the mean diffusivity (MD = (λ1 + λ2 + λ3)/3 ), the radial diffusivity
(RD = (λ2 + λ3)/2) and the fractional anisotropy (FA), which is a
measure of the total anisotropy of the tensor.

3 POLYNOMIAL META-MODEL
3.1 Meta-Model Creation and Accuracy
A previous parameter sensitivity study of the computational model
generated a dataset of 100,000 model evaluations. The study exam-
ined seven microstructural parameters and two pulse parameters.
These nine parameters were sampled using a Sobol low-discrepancy
sampling method [12] and the apparent diffusion tensor was cal-
culated from the dMRI signal. Six different tensor invariants were
calculated from the apparent diffusion tensor (FA, MD, RD, λ1, λ2
and λ3). The simulations were performed on SDSC’s Comet cluster
[39]. 40 nodes were used to run three simulations simultaneously
on each node, with each simulation using eight cores. The entire
study took approximately 7000 core hours with a median wall time
of 10 seconds per simulation; however, the longest simulation took
6.4 hours. This discrepancy in simulation times is due to the reso-
lution requirements for different cell volume fractions in the REV.
The LBM model involves space discretization with a Cartesian grid.
As the volume fraction increases, the extracellular space decreases.
It was found that to reach a minimum accuracy threshold, there
needed to be at least four nodes across the extracellular domain re-
gardless of size. For small cell diameters and large volume fractions
this condition requires smaller spatial discretizations leading to a
larger number of nodes and longer solution times. Additionally, in
the LBM model, the space and time discretization is coupled via
dx2 ∼ dt . This relationships means that for a 2-D domain, halving
the spatial discretization leads to a 16x increase in run time.

These long simulation times motivate the pursuit of more effi-
cient solution techniques, such as a meta-model. A meta-model, or
surrogatemodel, is amodel of amodel. To construct themeta-model,
the relationship between the inputs and outputs of the model is
examined with no regard for the underlying physics. The advantage

Table 1: Run time of models in CPU seconds. LBM-REV
model was run in parallel with 8 CPUs leading to a median
wall time of 10.13 seconds.

Model Median Run Time

3rd order meta-model 0.046 CPU seconds
4th order meta-model 0.091 CPU seconds
5th order meta-model 0.233 CPU seconds
6th order meta-model 0.587 CPU seconds
7th order meta-model 1.343 CPU seconds
LBM-REV model 81.03 CPU seconds

of meta-models is that they are often much faster to evaluate, thus
allowing fast approximate solutions. The dataset from the previous
sensitivity study was used to fit a polynomial meta-model to relate
the input microstructural and pulse parameters with the calculated
diffusion metrics using the open-source ChaosPy Python package
[6]. Because the input parameters were sampled from a uniform
distribution, the relationship between the inputs and outputs can be
modeled with a basis set of Legendre polynomials [42]. This basis
set used to interpolate the data using a least-squares method to form
a 9-dimensional, nth order polynomial for each of the six diffusion
metrics. To investigate the effect of different degree polynomials, n
was varied from 3 to 7. 75% of the dataset was used to fit the poly-
nomial, with 25% reserved to test the accuracy of the fit. Because
the dataset was generated via a Sobol sampling method, which is a
low discrepancy sampling method, the samples used to construct
the model are evenly distributed across the input space. Addition-
ally, the testing dataset is extracted from the same sequence as the
fitting dataset, so it is not only uniformly distributed, it also has
low discrepancy with the training dataset. This means the testing
dataset will be sampled at points far away from the training dataset,
allowing good confidence that these results are an upper limit of
error.

Before using the meta-model, it is important to determine its
accuracy. The meta-model was compared with the 25,000 LBM
evaluations that were not used to create it for four dMRI metrics
(FA, MD, RD, and λ1). The LBM-REV model produces transversely
isotropic diffusion leading to minimal difference between RD, λ2
and λ3, so only RD was considered. The relative error between the
meta-model and the underlying LBM model is shown in Figure 2.
For increasing polynomial order, the accuracy of the meta-model
improves, though the accuracy does not substantially increase be-
yond 4th order. The relative error is normalized by the average
value of the LBM dataset to avoid over-emphasizing differences
between small values. These results suggest that, as a whole, the
meta-model is an accurate representation of the underlying LBM
model and relationships derived from it should also be true to the
underlying LBM model. The meta-model is substantially faster to
evaluate, with a median evaluation time between 0.04 and 1.3 CPU
seconds, depending on the polynomial order, compared to 81 CPU
seconds for the LBM model (Table 1). The majority of the cost of
evaluating the meta-model is caused by the overhead of accessing
the polynomial. If multiple parameter sets are passed to the meta-
model at once, the average evaluation time decreases by a factor of
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Figure 3: Selection of pulse parameters. Green boxes repre-
sent the subset of pulse profiles that were selected for by
each dMRI metric. Blue boxes represent pulse profiles that
were selected by at least one, but not all, dMRI metrics. Red
boxes represent the five final pulse profile parameters. Only
pulse parameter combinations that were within the allowed
b-range are shown.

200. Additionally, the analytical nature of the meta-model allows
computing derivatives, which may aid in local sensitivity analysis
and model fitting using gradient descent methods. As the polyno-
mial order increases, the accuracy of the meta-model increases,
but so too does the evaluation time. For the rest of this paper, we
consider the 6th order polynomial meta-model, as it has a good
combination of accuracy and short evaluation time.

3.2 PGSE Pulse Selection
Because the meta-model can be evaluated much more efficiently
than the underlying LBM model, questions that would have been
computationally prohibitive to answer using the original LBM
model can now be addressed. One such question is which PGSE
pulse profiles can encode themost information about themicrostruc-
ture? When measuring the apparent diffusion tensor, the shape of
the diffusion-weighted pulse is important [9]. For the PGSE pulse
in particular, two key parameters are the gradient strength and
diffusion time. Both enable the dMRI signal to encode different as-
pects of the microstructure. For example, long diffusion times allow
water molecules to travel further distances, thus sensitizing them
to structures at larger length scales [7]. By utilizing multiple pulse
combinations, it is possible to increase the amount of microstruc-
tural information that can be extracted from the combined dMRI
signals. While it is broadly known how different pulse profiles affect
the signal [9], it is not known which combinations of pulses encode
the most structural information about the tissue. Because the use
of additional pulses increases imaging time, encoding the most
possible information into the fewest possible pulses is a priority.
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Figure 4: Example simulations of histology image and corre-
sponding periodic REV with same microstructural values.

In the meta-model, there are nine independent inputs. Seven
inputs are related to the microstructure and are intrinsic to the
tissue. The other two are related to the PGSE pulse profile (gradient
and diffusion time) and can be controlled by the MRI operator. To
determine how different pulse profiles affect the signal, an NxN
array consisting of combinations of the two pulse parameters was
defined and the meta-model was sampled at each pulse profile for
multiple combinations of microstructural parameters. For a uniform
sampling (M) of each of the seven microstructural parameters,M7

model evaluations are required at each point on the NxN array lead-
ing toM7N 2 evaluations. These evaluations were used to determine
which combinations of pulse profiles give the most information
about themicrostructure using twomeasures: the variance of values
within each vector and the covariance between the vectors.

If a pulse profile has a low variance, it will yield similar signal
values for any microstructural combination, making it difficult to
extract unique information about underlying microstructure. If two
vectors have a high covariance, they do not contain independent
information, leading to redundant measurements. After sampling
the meta-model, the results were filtered to only examine pulse
profileswith a b-value between 200 and 1500 s/mm2. The b-value is a
measure of the cumulative magnetization of the pulse and is a useful
predictor of how much signal attenuation is expected. This b-range
is typical of what is feasible in clinical imaging experiments. For
each dMRI metric, the vector with the largest variance was selected,
and the 25 vectors with the lowest average correlation to already
selected vectors were iteratively added. This resulted in 31 pulse
profiles, 19 of whichwere selected for by all four dMRImetrics. From
these 19, the five pulse profiles with the lowest average correlation
coefficient were selected. The pulse profiles selected and the relative
variance of all pulse profiles is shown in Figure 3.

It is here that the value of the meta-model, compared to the orig-
inal LBM model, becomes apparent. The meta-model was evaluated
on a 20x20 array of pulse profiles with 12 uniform samples for each
of the seven microstructural parameters. This created a set of 202
vectors each with 127 elements requiring 14*109 model evaluations.
For a median LBM model run-time of 81 CPU seconds, such an
investigation would be prohibitively expensive (36,800 CPU years).

4 HISTOLOGY-BASED SIMULATIONS
The LBM model’s REV geometry is a necessary abstraction of mus-
cle’s complex topology in order to allow parameterization of the ge-
ometry. To test how well it represents actual muscle structure, three
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simulations of histological informed geometries using.

histological images of skeletal muscle were procured [14, 17, 24]
and manually segmented into intra- and extracellular domains. Dif-
ferent diffusion coefficients and permeability values were used to
calculate a range of possible scenarios, while the diameter was
measured from the histology image with the Feret diameter plu-
gin in ImageJ [36] and the volume fraction was determined from
the segmented image. These histologically informed domains were
used with the LBM model to solve for the dMRI signal using 21
gradient directions for each of the five pulse profiles identified
with the meta-model. For each pulse, the apparent diffusion tensor
was calculated and the dMRI metrics were calculated. Simulations
over an REV with the same microstructural parameters were also
performed.

There exist preferential directions in terms of cell shape and orga-
nization in the histology images. This lead to transverse anisotropy
of the apparent diffusion tensor (λ2 > λ3), something that the cur-
rent periodic REV does not reproduce due to its symmetries. dMRI
of muscle does contain transverse anisotropy [8], and some authors
have hypothesized that it is related to elliptical cross-sections of
muscle cells [18]; however, this has not been proven conclusively
and other evidence suggests that the anisotropy may originate from
effects at larger length scales [30]. Because the REV was unable to
represent this anisotropy, an attempt was made to minimize local
geometric effects of the histology images by simulating the do-
main in its original orientation as well as rotated 90o . The resulting
signals were averaged using only the middle half of the domain’s
signal in each direction to avoid edge effects where the geometry
does not match across the periodic boundary.

Figure 4 compares the domain maps of a histologically informed
geometry with a simplified REV geometry with the same parame-
ters. The extracellular space of the histology is much more tortuous
and uneven than the consistent thickness of the REV’s extracellular
space. The error of the REV in representing the dMRI signal of
the histological images is shown in Figure 5. λ1 is most accurately
reproduced by the current REV, while the other five metrics are
substantially less accurate. Because λ1 represents diffusion in the
axial direction, where there are fewer restrictions to free diffusion,
it is closely related with the volumetric average of the two diffusion

Table 2: Range of input parameters used in meta-model and
inversion scheme. Parameters used in the meta-model but
not during the inversion scheme are marked by *.

Parameter Range

Muscle Cell Diameter 10 - 80 µm
Volume Fraction 0.70 - 0.95
Membrane Permeability 10 - 100 µm/s
Intracellular Diffusion 0.5 - 2.5 µm2/ms
Extracellular Diffusion 0.5 - 2.5 µm2/ms
*Intracellular T2 20 - 40 ms
*Extracellular T2 80 - 140 ms
*Gradient Strength 10 - 80 mT/m
*Diffusion Time 10 - 750 ms

coefficients, which the REV is capable of reproducing. In contrast,
the other dMRI metrics are additionally influenced by diffusion in
the transverse plane, where differences in the cell geometry be-
tween the histological image and the REV affect the signal. Most
of the disagreement between the histology images and the REV
comes from dMRI pulses with a long diffusion time. In these cases,
differences in the extracellular topology lead to large dMRI signal
differences.

More work is needed to improve the ability of the REV (or some
similarly reduced order, parameterized model) to match the ex-
pected signal from more complex muscle tissue. Additionally, the
employed histology images have a small field of view (∼ 200 µm
a side). Using images with a field of view on the order of a dMRI
voxel (∼ 1 − 2 mm) may eliminate some of the local geometrical
artifacts; however, solving over such a large domain while still
maintaining spatial resolution to resolve muscle structure (dx ∼ 1
µm) will require increased HPC resources.

5 INVERSION SCHEME
Up until this point we have examined the forward problem, which
consists of solving for the dMRI signal starting from a known mi-
crostructural parameter set. However, one does not typically have
this microstructural information. Rather, the dMRI signal is mea-
sured with the goal of determining the microstructure that gener-
ated it. This inversion of the forward problem is challenging because
there is no direct way to model this inverse relationship. Instead, a
search algorithm is implemented to try and find a microstructural
parameter set that corresponds to the measured dMRI signal.

In a previous sensitivity study [28], the effect of two of the seven
microstructural parameters was found to be negligible (intra- and
extracellular T2 time) and are not considered here, leaving five
microstructural parameters to be the unknowns for the inverse
problem. Using the five pulse profiles previously selected, a candi-
date solution vector of the six calculated dMRI metrics from each
pulse was constructed. This candidate solution vector was com-
pared with the reference vector of dMRI data, from which we wish
to infer microstructural parameters. An objective function consist-
ing of the normalized L2 error between the reference vector and the
candidate solution vector was defined. For each candidate solution,
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Table 3: Average L2 error of objective function for inversion attempts of three different test cases.

Muscle Cell Volume Membrane Intracellular Extracellular
Diameter Fraction Permeability Diffusion Diffusion

REV with no noise 2.46% 11.3% 3.73% 3.40% 9.97%
REV with SNR = 50 10.6% 11.6% 12.6% 10.73% 13.3%
Histology-based images 14.1% 44.4% 27.5% 7.14% 15.56%

all five pulse parameters were simulated for an REV constructed
from microstructural parameters of the candidate solution.

The objective function was minimized using a fitting procedure
based on the method developed by Knysh and Korkolis [21], which
consists of a global search followed by a local search. During the
global search, 50 model evaluations are performed using a Latin
hypercube to examine the entire input space. The algorithm was
modified to save the results of every model evaluation during this
global search. At the beginning of each new case, previously saved
iterations were loaded to allow them to be reused for the global
search. This allowed an initial set of solutions to be available with-
out needing to be recomputed. As more global searches are per-
formed, this list of previous solutions grows, allowing for fewer
simulations to be required during the global search portion of the
algorithm. The local search used radial basis functions to construct
a response surface from a modified CORS algorithm [33]. 100 model
evaluations were performed during this local search method. At
the end of the local search, the best candidate solution was re-
turned. Microstructural parameters were restricted to the range of
values given in Table 2. The global and local searches each allow for
multiple simultaneous function evaluations enabling parallel com-
putation. LBM simulations were performed using GPU-accelerated
code on a local server with 8 Nvidia TITAN X GPUs and on two
of SDSU’s Comet GPU nodes with 4 Nvidia Pascal P100 GPUs [39].
Five simulations were performed on each GPU in parallel allowing
for 40 or 20 concurrent simulations at a time, respectively.

Three different cases were examined. The first consisted of sim-
ulations of a periodic REV with no noise, the second was a periodic
REV with noise added at SNR=50, and the third case was noise-free
simulations of histology images. For the REV, four different mi-
crostructural cases were generated. For each of the three histology
cases, four microstructural cases were generated with different per-
meability and diffusion coefficients (diameter and volume fraction
are fixed by the image). Parameters for these cases are given in Ta-
ble A1. As shown in section 4, comparing the periodic REV results
with the histology simulations for the forward problem indicates
that the former is not a realistic representation of the histology
images. By examining how well the model can fit simulations for
the REV and the REV with noise, we can gain an understanding of
how well the dMRI signal can be inverted without the issues of the
mismatch between the REV and actual muscle tissue. This leaves
the problem to that of improving the REV’s ability to represent
the muscle signal. If an appropriate reduced-order computational
model of muscle can be developed, it should be possible to invert
the signal in order to infer microstructural parameters.

Results of the fitting procedure are shown in Table 3. The most
accurate results are for the periodic REV geometry with no added

noise while the REV geometry with added noise had approximately
twice the relative error. The accuracy of the results from the histo-
logically informed geometries is comparable to that of the periodic
REV geometry with noise except for volume fraction and perme-
ability. These parameters were substantially less accurately fit, a
result likely due to the inability of the REV to perfectly represent
the dMRI signal from the histology images as discussed above. The
poor results for the volume fraction are partially due to the method
of normalizing results. Results are normalized by the allowable pa-
rameter range, which is relatively small for volume fraction (0.25)
compared to its absolute value (0.70 - 0.95); such a relationship does
not exist for the other microstructural parameters. The success
in fitting the REV, even when there is noise, shows that the in-
verse problem can be solved if the model represents the underlying
physics. Improving the ability of the REV to represent the dMRI
signal of muscle through better morphological parameterization
will improve this ability further.

We focused on developing a scheme to fit the model using paral-
lel computations run on GPUs. A similar method could have been
performed using multiple CPUs, or both could be combined al-
lowing for full utilization of available computing resources. The
results presented here are generally concerned with inferring mi-
crostructural parameters from a single voxel, however, future work
will focus on the scalability of the method in terms of extracting
parameters for every voxel of a dMRI image. The fitting method
took approximately 45 minutes per case. Much of this time was
computing in domains that had small diameters and high volume
fractions. Although the extracellular domains of these cases require
the increased spatial discretization, the accuracy of the intracellular
domain does increase substantially. This leads to wasted resources
as the increased resolution in the intracellular space (up to 90%
of the domain) is not necessary. Implementation of multi-domain
mesh refinement [22] could substantially reduce these simulation
times by only refining the mesh over the extracellular domain
where the increased resolution is necessary. Additionally, future
improvements of the algorithm could use the meta-model for the
global search to establish regions of potential candidate solutions
before the more expensive, but accurate, LBM model is used for
a local search. These improvements would yield faster evaluation
times, enabling either more model evaluations during the fitting
procedure or higher throughput of individual cases, something
necessary if an entire dMRI image is to be examined.

Future work will also examine how machine learning, in partic-
ular deep learning, can aid in increasing accuracy and speed of the
inversion process. Implementing machine learning is, in some ways,
essentially just expanding the meta-model to be a more compli-
cated response surface that does not have an analytical expression.
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Machine learning methods were initially considered in place of the
fitting procedure presented. However, because there are several
issues that are extrinsic to the inversion algorithm (in particular
how well the REV matches actual muscle tissue), an explicit model
fitting method was chosen in order to allow better understanding
of the methodological error before adding on potential additional
error from a machine learning algorithm.

6 CONCLUSION
The aim of this work is to present techniques used to leverage
forward problem simulations to improve the inverse problem con-
sisting of extracting muscle cell microstructure from dMRI signal.
These techniques allow for efficient model evaluation, enabling
investigations that are too computationally expensive with the
underlying models. We showed how it is possible to construct a
meta-model of dMRI in muscle, allowing for fast model evalua-
tion, and how such a model can be used to determine dMRI pulse
parameters to increase sensitivity to the muscle microstructure.
Additionally, we showed that it is possible to solve the inverse
problem and recover the microstructural parameters of the muscle
from the dMRI signal using a simple REV model. We found that
the REV model performs poorly when compared to simulations
based on histology images of muscle, suggesting future work is
required to improve this REV abstraction approach. The methods
presented here alleviate the computational burden of evaluations
of a numerical model for dMRI, allowing the interpretation of the
dMRI signal of muscle that had previously only been performed
with analytical methods.

ACKNOWLEDGMENTS
Funding for this work was provided by an NSF Graduate Research
Fellowship for NMN and by the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by National
Science Foundation grant ACI-1548562 and provided access to the
SDSC Comet Cluster under allocation TG-MCB180044. Additional
support was provided by the R.A. Pritzker endowed chair and NSF
grant CMI-1762774.

REFERENCES
[1] Angelos Barmpoutis and Baba C Vemuri. 2010. A unified framework for estimat-

ing diffusion tensors of any order with symmetric positive-definite constraints.
In Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium
on. IEEE, 1385–1388.

[2] Peter J Basser, James Mattiello, and Denis LeBihan. 1994. MR diffusion tensor
spectroscopy and imaging. Biophysical Journal 66, 1 (1994), 259.

[3] Leandro Beltrachini, Zeike A Taylor, and Alejandro F Frangi. 2015. A parametric
finite element solution of the generalised Bloch–Torrey equation for arbitrary
domains. Journal of Magnetic Resonance 259 (2015), 126–134.

[4] Matthew J Delmonico, Tamara BHarris, Marjolein Visser, SeokWon Park, Molly B
Conroy, Pedro Velasquez-Mieyer, Robert Boudreau, Todd M Manini, Michael
Nevitt, Anne B Newman, and Bret H. Goodpaster. 2009. Longitudinal study of
muscle strength, quality, and adipose tissue infiltration. American Journal of
Clinical Nutrition 90, 6 (2009), 1579–1585. https://doi.org/10.3945/ajcn.2009.28047

[5] Richard HT Edwards. 1981. Human muscle function and fatigue. In Ciba Found
Symp, Vol. 82. Wiley Online Library, 1–18.

[6] Jonathan Feinberg and Hans Petter Langtangen. 2015. Chaospy: An open source
tool for designing methods of uncertainty quantification. Journal of Computa-
tional Science 11 (2015), 46–57.

[7] Els Fieremans, Gregory Lemberskiy, Jelle Veraart, Eric E Sigmund, Soterios
Gyftopoulos, and Dmitry S Novikov. 2017. In vivo measurement of membrane
permeability and myofiber size in human muscle using time-dependent diffusion
tensor imaging and the random permeable barrier model. NMR in Biomedicine
30, 3 (2017), e3612.

[8] Craig J. Galbán, Stefan Maderwald, Kai Uffmann, Armin de Greiff, and Mark E.
Ladd. 2004. Diffusive sensitivity to muscle architecture: a magnetic resonance
diffusion tensor imaging study of the human calf. European Journal of Applied
Physiology 93, 3 (dec 2004), 253–262. https://doi.org/10.1007/s00421-004-1186-2

[9] Denis S Grebenkov. 2010. Use, misuse, and abuse of apparent diffusion coefficients.
Concepts in Magnetic Resonance Part A: An Educational Journal 36, 1 (2010), 24–35.

[10] Matt G. Hall and Chris A. Clark. 2017. Diffusion in hierarchical systems: A
simulation study in models of healthy and diseased muscle tissue. Magnetic
Resonance in Medicine 78, 3 (sep 2017), 1187–1198. https://doi.org/10.1002/mrm.
26469

[11] Anneriet M Heemskerk and Bruce M Damon. 2007. Diffusion Tensor MRI As-
sessment of Skeletal Muscle Architecture. Current medical imaging reviews 3, 3
(2007), 152–160. https://doi.org/10.2174/157340507781386988 arXiv:15334406

[12] Jonathan D Herman and Will Usher. 2017. SALib: An open-source Python library
for Sensitivity Analysis. J. Open Source Software 2, 9 (2017), 97.

[13] Steven B. Heymsfield, M. Cristina Gonzalez, Jianhua Lu, Guang Jia, and Jolene
Zheng. 2015. Skeletal musclemass and quality: Evolution ofmodernmeasurement
concepts in the context of sarcopenia. Proceedings of the Nutrition Society 74, 4
(nov 2015), 355–366. https://doi.org/10.1017/S0029665115000129

[14] M.A. Hill. 2017. Embryology Skeletal muscle histology 003.jpg.
https://embryology.med.unsw.edu.au/embryology/index.php/File:Skeletal_
muscle_histology_003.jpg. Accessed: 2019-04-05.

[15] Scott N Hwang, Chih-Liang Chin, FelixWWehrli, and David B Hackney. 2003. An
image-based finite difference model for simulating restricted diffusion. Magnetic
Resonance in Medicine 50, 2 (2003), 373–382.

[16] F. M. Ivey, B. L. Tracy, J. T. Lemmer, M. NessAiver, E. J. Metter, J. L. Fozard,
and Ben F. Hurley. 2000. Effects of strength training and detraining on muscle
quality: Age and gender comparisons. Journals of Gerontology - Series A Biological
Sciences and Medical Sciences 55, 3 (mar 2000), B152–B157. https://doi.org/10.
1093/gerona/55.3.B152

[17] R. Jennings and C. Premanandan. 2017. Veterinary Histology Chapter 4: Skeletal
Muscle. https://ohiostate.pressbooks.pub/vethisto/chapter/4-skeletal-muscle/.
Accessed: 2019-04-05.

[18] Dimitrios C. Karampinos, Kevin F. King, Bradley P. Sutton, and John G. Georgiadis.
2009. Myofiber ellipticity as an explanation for transverse asymmetry of skeletal
muscle diffusion MRI in vivo signal. Annals of Biomedical Engineering 37, 12 (dec
2009), 2532–2546. https://doi.org/10.1007/s10439-009-9783-1

[19] Robert T Kell, Gordon Bell, and Art Quinney. 2001. Musculoskeletal fitness,
health outcomes and quality of life. Sports Medicine 31, 12 (2001), 863–873.

[20] Henrik Klitgaard, M Mantoni, S Schiaffino, S Ausoni, L Gorza, C Laurent-Winter,
P Schnohr, and B Saltin. 1990. Function, morphology and protein expression
of ageing skeletal muscle: a cross-sectional study of elderly men with different
training backgrounds. Acta Physiologica Scandinavica 140, 1 (1990), 41–54.

[21] Paul Knysh and Yannis Korkolis. 2016. Blackbox: A procedure for parallel op-
timization of expensive black-box functions. arXiv preprint arXiv:1605.00998
(2016).

[22] Daniel Lagrava, Orestis Malaspinas, Jonas Latt, and Bastien Chopard. 2012. Ad-
vances in multi-domain lattice Boltzmann grid refinement. J. Comput. Phys. 231,
14 (2012), 4808–4822.

[23] Amy E Latimer-Cheung, Lara A Pilutti, Audrey L Hicks, Kathleen A Martin
Ginis, Alyssa M Fenuta, K Ann MacKibbon, and Robert W Motl. 2013. Effects of
exercise training on fitness, mobility, fatigue, and health-related quality of life
among adults with multiple sclerosis: a systematic review to inform guideline
development. Archives of physical medicine and rehabilitation 94, 9 (2013), 1800–
1828.

[24] Lesela. 2011. Cross section of normal skeletal muscle from mouse quadriceps.
https://www.flickr.com/photos/agaphd/5923238105/in/photostream/. Accessed:
2018-11-06.

[25] Jamie S McPhee, James Cameron, Thomas Maden-Wilkinson, Mathew Piasecki,
Moi Hoon Yap, David A Jones, and Hans Degens. 2018. The contributions
of fibre atrophy, fibre loss, in situ specific force and voluntary activation to
weakness in sarcopenia. The Journals of Gerontology: Series A 00, 00 (2018), 1–8.
https://doi.org/10.1093/gerona/gly040

[26] Noel M Naughton, Nicolas R. Gallo, Aaron T. Anderson, and John G Georgiadis.
2019. Comparison of dMRI Models for Skeletal Muscle Microstructure Estimation
with Numerical Simulations and Porcine Phantom. In Proceedings of the 27th
Annual Meeting of the International Society for Magnetic Resonance in Medicine.
ISMRM.

[27] Noel M Naughton and John G Georgiadis. 2019. Comparison of two-compartment
exchange and continuum models of dMRI in skeletal muscle. Physics in Medicine
& Biology 64, 15 (2019), 155004. https://doi.org/10.1088/1361-6560/ab2aa6

[28] Noel M Naughton and John G Georgiadis. 2019. Global Sensitivity Analysis of
Skeletal Muscle dMRI: Effects of Microstructural and Pulse Parameters. Magnetic
Resonance in Medicine (submitted) (2019).

[29] Noel M Naughton and John G Georgiadis. 2019. Lattice Boltzmann method for
simulation of diffusion magnetic resonance imaging physics in heterogeneous
tissue models. arXiv preprint arXiv:1907.00908 (2019).

https://doi.org/10.3945/ajcn.2009.28047
https://doi.org/10.1007/s00421-004-1186-2
https://doi.org/10.1002/mrm.26469
https://doi.org/10.1002/mrm.26469
https://doi.org/10.2174/157340507781386988
http://arxiv.org/abs/15334406
https://doi.org/10.1017/S0029665115000129
https://embryology.med.unsw.edu.au/embryology/index.php/File:Skeletal_muscle_histology_003.jpg
https://embryology.med.unsw.edu.au/embryology/index.php/File:Skeletal_muscle_histology_003.jpg
https://doi.org/10.1093/gerona/55.3.B152
https://doi.org/10.1093/gerona/55.3.B152
https://doi.org/10.1007/s10439-009-9783-1
https://doi.org/10.1093/gerona/gly040
https://doi.org/10.1088/1361-6560/ab2aa6


PEARC ’19, July 28– August 01, 2019, Chicago, IL, USA Noel Naughton and John Georgiadis

[30] Noel M Naughton, Anthony Wang, and John G Georgiadis. 2019. Fascicle Elliptic-
ity as an Explanation of Transverse Anisotropy in Diffusion MRI Measurements
of Skeletal Muscle. In Proceedings of the 27th Annual Meeting of the International
Society for Magnetic Resonance in Medicine. ISMRM.

[31] Van-Dang Nguyen, Johan Jansson, Johan Hoffman, and Jing-Rebecca Li. 2018.
A partition of unity finite element method for computational diffusion MRI. J.
Comput. Phys. 375 (2018), 271–290.

[32] Peter P Purslow. 2002. The structure and functional significance of variations in
the connective tissue within muscle. Comparative Biochemistry and Physiology
Part A: Molecular & Integrative Physiology 133, 4 (2002), 947–966.

[33] Rommel G Regis and Christine A Shoemaker. 2005. Constrained global optimiza-
tion of expensive black box functions using radial basis functions. Journal of
Global optimization 31, 1 (2005), 153–171.

[34] Greg Russell, Kevin D Harkins, Timothy W Secomb, Jean-Philippe Galons, and
Theodore P Trouard. 2012. A finite difference method with periodic boundary
conditions for simulations of diffusion-weightedmagnetic resonance experiments
in tissue. Physics in Medicine and Biology 57, 4 (2012), N35.

[35] Dinesh Samuel, Philip Rowe, Victoria Hood, and Alexander Nicol. 2011. The
relationships between muscle strength, biomechanical functional moments and
health-related quality of life in non-elite older adults. Age and ageing 41, 2 (2011),
224–230.

[36] Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. 2012. NIH Image
to ImageJ: 25 years of image analysis. Nature methods 9, 7 (2012), 671.

[37] Isaac Selva Raj, Stephen R. Bird, and Anthony J. Shield. 2017. Ultrasound Mea-
surements of Skeletal Muscle Architecture Are Associated with Strength and
Functional Capacity in Older Adults. Ultrasound in Medicine and Biology 43, 3
(mar 2017), 586–594. https://doi.org/10.1016/j.ultrasmedbio.2016.11.013

[38] Edward O Stejskal and John E Tanner. 1965. Spin diffusion measurements: spin
echoes in the presence of a time-dependent field gradient. The Journal of Chemical
Physics 42, 1 (1965), 288–292.

[39] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood,
S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-
Diehr. 2014. XSEDE: Accelerating Scientific Discovery. Computing in Science &
Engineering 16, 5 (Sept.-Oct. 2014), 62–74. https://doi.org/10.1109/MCSE.2014.80

[40] Dang Van Nguyen, Jing-Rebecca Li, Denis Grebenkov, and Denis Le Bihan. 2014.
A finite elements method to solve the Bloch–Torrey equation applied to diffusion
magnetic resonance imaging. J. Comput. Phys. 263 (2014), 283–302.

[41] B. H. Wokke, J. C. van den Bergen, M. J. Versluis, E. H. Niks, J. Milles, A. G.
Webb, E. W. van Zwet, A. Aartsma-Rus, J. J. Verschuuren, and H. E. Kan. 2014.
Quantitative MRI and strength measurements in the assessment of muscle quality
in Duchenne muscular dystrophy. Neuromuscular Disorders 24, 5 (may 2014),
409–416. https://doi.org/10.1016/j.nmd.2014.01.015

[42] Dongbin Xiu and George Em Karniadakis. 2002. The Wiener–Askey polynomial
chaos for stochastic differential equations. SIAM journal on scientific computing
24, 2 (2002), 619–644.

[43] Junzhong Xu, Mark D Does, and John C Gore. 2007. Numerical study of water
diffusion in biological tissues using an improved finite difference method. Physics
in Medicine and Biology 52, 7 (2007), N111.

A MICROSTRUCTURAL PARAMETERS FOR
INVERSION RESULTS

Table A1 provides the parameters for the simulations that were used
with the inversion scheme for both the periodic REV and histology
simulations.

Table A1: Microstructural Parameters for fitting cases.

REV Geometry Case 1 Case 2 Case 3 Case 4 Case 5
Diameter (µm) 15 30 50 75 50
Volume Fraction 0.80 0.85 0.72 0.80 0.90
Permeability ( µms ) 15 50 80 50 25
Intracellular Diff. ( µm

2

ms ) 1.0 1.5 2.0 1.2 1.0
Extracellular Diff. ( µm

2

ms ) 2.0 2.2 1.5 2.0 1.8

Histology Geometry Case 1 Case 2 Case 3 Case 4
Permeability ( µms ) 10 10 85 50
Intracellular Diff. ( µm

2

ms ) 1.0 1.0 2.0 1.0
Extracellular Diff. ( µm

2

ms ) 2.0 2.0 2.0 1.0
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